Large-Eddy Simulation Numerical Study on Phase Change Heat Transfer Characteristics of Melting Pool
-
摘要: 研究反应堆熔融池内部的流动与传热特性对保证熔融物堆内滞留具有重要意义。本文基于开源软件OpenFOAM平台,结合大涡模拟湍流方法和熔融池相变过程建立熔融池传热模型,针对典型熔融池传热实验LIVE工况开展数值计算,得到了熔融池内速度场和温度场以及下封头内壁面硬壳厚度和热流密度分布情况。结果表明,熔融池内速度、温度和热流密度随高度或径向角度的增大而增大;硬壳厚度随径向角度的增大而减小;下封头壁面上的热负荷在顶部聚集。传热参数计算结果与实验数据整体符合较好,可以有效反映出熔融池内自然对流与相变过程,验证了计算模型的可靠性,可为进一步研究熔融池相变传热特性提供参考。Abstract: The research of flow and heat transfer characteristics in reactor melting pool is of great significance to ensure the in-vessel retention. Based on the open source software OpenFOAM platform, combined with the large-eddy simulation turbulence method and the phase change process of the melting pool, this paper establishes the heat transfer model of the melting pool, carries out numerical calculation for the LIVE working condition of the typical melting pool heat transfer experiment, and obtains the velocity field and temperature field in the melting pool, as well as the thickness and heat flux distribution of the hard shell on the inner wall of the lower head. The results show that the velocity, temperature and heat flux density in the melting pool increase with the increase of height or radial angle, the thickness of the hard shell decreases with the increase of radial angle, and the heat load on the wall of the lower head accumulates at the top. The heat transfer parameter calculation results are in good agreement with the experimental data as a whole, which can effectively reflect the natural convection and phase change process in the melting pool, verify the reliability of the calculation model, and provide a reference for further research on the phase change heat transfer characteristics of the melting pool.
-
Key words:
- Melting pool /
- Natural convection /
- Solidification /
- Large-eddy simulation /
- LIVE experiment
-
图 1 LIVE实验段示意图[14]
Figure 1. Schematic Diagram of LIVE Experimental Section
图 3 气隙传热系数对比图[17]
Figure 3. Comparison of Heat Transfer Coefficient of Gas Gap
表 1 LIVE-L3A实验工况参数表
Table 1. Parameters of LIVE-L3A Experimental Conditions
参数 工况1 工况2 熔融物体积/L 120 120 熔融池高度/mm 310 310 加热功率/kW 10 7 初始温度/℃ 350 350 冷却剂进口温度/℃ 16 16 冷却剂出口温度/℃ 60 45 表 2 不同网格尺寸计算结果对比表
Table 2. Comparison of Calculation Results of Different Grid Sizes
网格数 熔融池平均温度/K 壁面平均热流密度/(W·m−2) 70万 539.1 7456.8 92万 548.2 8508.54 115万 550.2 8532.65 表 3 建模计算物性参数表
Table 3. Physical Parameters of Modeling Calculation
参数 数值 液相线温度/K 557 固相线温度/K 497 密度/(kg·m−3) 1914 定压比热容/(J·kg−1·K−1) 1337 液相导热系数/(W·m−1·K−1) 0.44 固相导热系数/(W·m−1·K−1) 0.6 壁面导热系数/(W·m−1·K−1) 14.3 运动粘度/(m2·s−1) 1.73×10−6 热膨胀系数/K−1 3.81×10−4 相变潜热(/kJ·kg−1) 161.96 -
[1] THEOFANOUS T G, LIU C, ADDITON S, et al. In-vessel cool ability and retention of a core melt[J]. Nuclear Engineering and Design, 1997, 169(1-3): 1-48. doi: 10.1016/S0029-5493(97)00009-5 [2] KYMALAINEN O, TUOMISTO H, HONGISTO O, et al. Heat-flux distribution from a volumetrically heated pool with high Rayleigh number[J]. Nuclear Engineering and Design, 1994, 149(1-3): 401-408. doi: 10.1016/0029-5493(94)90305-0 [3] ZHANG Y P, ZHANG L T, ZHOU Y K, et al. The COPRA experiments on the in-vessel melt pool behavior in the RPV lower head[J]. Annals of Nuclear Energy, 2016(89): 19-27. [4] BUCK M, BURGER M, MIASSOEDOV A, et al. The LIVE program-results of test L1 and joint analyses on transient molten pool thermal hydraulics[J]. Progress in Nuclear Energy, 2010, 52(1): 46-60. doi: 10.1016/j.pnucene.2009.09.007 [5] TRAN C T, DINH T N. The effective convectivity model for simulation of melt pool heat transfer in a light water reactor pressure vessel lower head. Part I: physical processes, modeling and model implementation[J]. Progress in Nuclear Energy, 2009, 51(8): 849-859. doi: 10.1016/j.pnucene.2009.06.007 [6] TRAN C T, DINH T N. The effective convectivity model for simulation of melt pool heat transfer in a light water reactor pressure vessel lower head. Part II: model assessment and application[J]. Progress in Nuclear Energy, 2009, 51(8): 860-871. doi: 10.1016/j.pnucene.2009.06.001 [7] ZHANG Y P, SU G H, QIU S Z, et al. A simple novel and fast computational model for the LIVE-L4[J]. Progress in Nuclear Energy, 2013(68): 20-30. [8] 张卢腾,苏光辉,马在勇,等. 二维瞬态熔融池传热特性分析程序开发与验证[J]. 核动力工程,2019, 40(S2): 1-5. [9] FUKASAWA M, HAYAKAWA S, SAITO M. Thermal-hydraulic analysis for inversely stratified molten corium in lower vessel[J]. Journal of Nuclear Science and Technology, 2008, 45(9): 873-888. doi: 10.1080/18811248.2008.9711489 [10] KHAROUA N, KHEZZAR L, NEMOUCHI Z, et al. LES study of the combined effects of groups of vortices generated by a pulsating turbulent plane jet impinging on a semi-cylinder[J]. Applied Thermal Engineering, 2017(114): 948-960. [11] VOLLER V R, PRAKASH C. A fixed-grid numerical modeling methodology for convection-diffusion mushy region phase- change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. doi: 10.1016/0017-9310(87)90317-6 [12] 王溪,孟召灿,程旭. 基于OpenFOAM的熔融池自然对流传热与凝固数值研究[J]. 原子能科学技术,2015, 49(8): 1393-1398. doi: 10.7538/yzk.2015.49.08.1393 [13] RÖSLER F, BRÜGGEMANN D. Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments[J]. Heat and Mass Transfer, 2011, 47(8): 1027-1033. doi: 10.1007/s00231-011-0866-9 [14] GAUS-LIU X, MJASOEDOV A, CRON T, et al. In-vessel melt pool coolibility test—description and results of LIVE experiments[J]. Nuclear Engineering and Design, 2010(240): 3898-3903. [15] GAUS-LIU X, MJASOEDOV A, CRON T, et al. Test and simulation results of LIVE-L4+LIVE-L5L[R]. Germany: Karlsruhe Institute of Technology, 2011. [16] DINH T N, KONOVALIKHIN M J, SEHGAL B R. Core melt spreading on a reactor containment floor[J]. Progress in Nuclear Energy, 2000, 36(4): 405-468. doi: 10.1016/S0149-1970(00)00088-3 [17] PHAM Q T, SEILER J M, COMBEAU H, et al. Modeling of heat transfer and solidification in LIVE-L3A experiment[J]. International Journal of Heat and Mass Transfer, 2013, 58(1-2): 691-701. doi: 10.1016/j.ijheatmasstransfer.2012.11.030 [18] MARUYAMA Y, YAMANO N, MORIYAMA K, et al. Experimental study on in-vessel debris coolability in ALPHA program[J]. Nuclear Engineering and Design, 1999, 187(2): 241-254. doi: 10.1016/S0029-5493(98)00278-7 [19] SEHGAL B, GIRI A, CHIKKANAGOUDAR U, et al. Experiments on in-vessel melt coolability in the EC-FOREVER program[J]. Nuclear Engineering and Design, 2006, 236(19): 2199-2210.