高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔融池相变传热特性的大涡模拟数值研究

席治国 张卢腾 胡钰文 宫厚军 马在勇 孙皖 周文雄 潘良明

席治国, 张卢腾, 胡钰文, 宫厚军, 马在勇, 孙皖, 周文雄, 潘良明. 熔融池相变传热特性的大涡模拟数值研究[J]. 核动力工程, 2022, 43(1): 15-21. doi: 10.13832/j.jnpe.2022.01.0015
引用本文: 席治国, 张卢腾, 胡钰文, 宫厚军, 马在勇, 孙皖, 周文雄, 潘良明. 熔融池相变传热特性的大涡模拟数值研究[J]. 核动力工程, 2022, 43(1): 15-21. doi: 10.13832/j.jnpe.2022.01.0015
Xi Zhiguo, Zhang Luteng, Hu Yuwen, Gong Houjun, Ma Zaiyong, Sun Wan, Zhou Wenxiong, Pan Liangming. Large-Eddy Simulation Numerical Study on Phase Change Heat Transfer Characteristics of Melting Pool[J]. Nuclear Power Engineering, 2022, 43(1): 15-21. doi: 10.13832/j.jnpe.2022.01.0015
Citation: Xi Zhiguo, Zhang Luteng, Hu Yuwen, Gong Houjun, Ma Zaiyong, Sun Wan, Zhou Wenxiong, Pan Liangming. Large-Eddy Simulation Numerical Study on Phase Change Heat Transfer Characteristics of Melting Pool[J]. Nuclear Power Engineering, 2022, 43(1): 15-21. doi: 10.13832/j.jnpe.2022.01.0015

熔融池相变传热特性的大涡模拟数值研究

doi: 10.13832/j.jnpe.2022.01.0015
基金项目: 国家自然科学基金(11805026、11705188)
详细信息
    作者简介:

    席治国(1997—),男,硕士研究生,动力工程及工程热物理专业,E-mail: 20191002010t@cqu.edu.cn

    通讯作者:

    张卢腾,E-mail: ltzhang@cqu.edu.cn

  • 中图分类号: TL334

Large-Eddy Simulation Numerical Study on Phase Change Heat Transfer Characteristics of Melting Pool

  • 摘要: 研究反应堆熔融池内部的流动与传热特性对保证熔融物堆内滞留具有重要意义。本文基于开源软件OpenFOAM平台,结合大涡模拟湍流方法和熔融池相变过程建立熔融池传热模型,针对典型熔融池传热实验LIVE工况开展数值计算,得到了熔融池内速度场和温度场以及下封头内壁面硬壳厚度和热流密度分布情况。结果表明,熔融池内速度、温度和热流密度随高度或径向角度的增大而增大;硬壳厚度随径向角度的增大而减小;下封头壁面上的热负荷在顶部聚集。传热参数计算结果与实验数据整体符合较好,可以有效反映出熔融池内自然对流与相变过程,验证了计算模型的可靠性,可为进一步研究熔融池相变传热特性提供参考。

     

  • 图  1  LIVE实验段示意图[14]

    Figure  1.  Schematic Diagram of LIVE Experimental Section

    图  2  熔融池建模网格示意图

    Figure  2.  Schematic Diagram of Melting Pool Modeling Grid

    图  3  气隙传热系数对比图[17]

    Figure  3.  Comparison of Heat Transfer Coefficient of Gas Gap

    图  4  数值模拟稳态阶段速度场

    Figure  4.  Numerical Simulation of Steady-state Velocity Field

    图  5  数值模拟稳态阶段温度场

    Figure  5.  Numerical Simulation of Steady-state Temperature Field    

    图  6  熔融池内温度分布模拟结果与实验数据对比

    Figure  6.  Comparison of Simulation Results and Experimental Data of Temperature Distribution in the Melting Pool

    图  7  数值模拟稳态阶段硬壳厚度分布

    Figure  7.  Numerical Simulation of Hard Shell Thickness Distribution in Steady State

    图  8  数值模拟稳态阶段热流密度分布

    Figure  8.  Numerical Simulation of Heat Flux Distribution in Steady State  

    图  9  壁面热流密度模拟结果与实验数据对比

    Figure  9.  Comparison of Wall Heat Flux Simulation Results and Experimental Data

    表  1  LIVE-L3A实验工况参数表

    Table  1.   Parameters of LIVE-L3A Experimental Conditions

    参数工况1工况2
    熔融物体积/L120120
    熔融池高度/mm310310
    加热功率/kW107
    初始温度/℃350350
    冷却剂进口温度/℃1616
    冷却剂出口温度/℃6045
    下载: 导出CSV

    表  2  不同网格尺寸计算结果对比表

    Table  2.   Comparison of Calculation Results of Different Grid Sizes

    网格数熔融池平均温度/K壁面平均热流密度/(W·m−2)
    70万539.17456.8
    92万548.28508.54
    115万550.28532.65
    下载: 导出CSV

    表  3  建模计算物性参数表

    Table  3.   Physical Parameters of Modeling Calculation

    参数数值
    液相线温度/K557
    固相线温度/K497
    密度/(kg·m−3)1914
    定压比热容/(J·kg−1·K−1)1337
    液相导热系数/(W·m−1·K−1)0.44
    固相导热系数/(W·m−1·K−1)0.6
    壁面导热系数/(W·m−1·K−1)14.3
    运动粘度/(m2·s−1)1.73×10−6
    热膨胀系数/K−13.81×10−4
    相变潜热(/kJ·kg−1)161.96
    下载: 导出CSV
  • [1] THEOFANOUS T G, LIU C, ADDITON S, et al. In-vessel cool ability and retention of a core melt[J]. Nuclear Engineering and Design, 1997, 169(1-3): 1-48. doi: 10.1016/S0029-5493(97)00009-5
    [2] KYMALAINEN O, TUOMISTO H, HONGISTO O, et al. Heat-flux distribution from a volumetrically heated pool with high Rayleigh number[J]. Nuclear Engineering and Design, 1994, 149(1-3): 401-408. doi: 10.1016/0029-5493(94)90305-0
    [3] ZHANG Y P, ZHANG L T, ZHOU Y K, et al. The COPRA experiments on the in-vessel melt pool behavior in the RPV lower head[J]. Annals of Nuclear Energy, 2016(89): 19-27.
    [4] BUCK M, BURGER M, MIASSOEDOV A, et al. The LIVE program-results of test L1 and joint analyses on transient molten pool thermal hydraulics[J]. Progress in Nuclear Energy, 2010, 52(1): 46-60. doi: 10.1016/j.pnucene.2009.09.007
    [5] TRAN C T, DINH T N. The effective convectivity model for simulation of melt pool heat transfer in a light water reactor pressure vessel lower head. Part I: physical processes, modeling and model implementation[J]. Progress in Nuclear Energy, 2009, 51(8): 849-859. doi: 10.1016/j.pnucene.2009.06.007
    [6] TRAN C T, DINH T N. The effective convectivity model for simulation of melt pool heat transfer in a light water reactor pressure vessel lower head. Part II: model assessment and application[J]. Progress in Nuclear Energy, 2009, 51(8): 860-871. doi: 10.1016/j.pnucene.2009.06.001
    [7] ZHANG Y P, SU G H, QIU S Z, et al. A simple novel and fast computational model for the LIVE-L4[J]. Progress in Nuclear Energy, 2013(68): 20-30.
    [8] 张卢腾,苏光辉,马在勇,等. 二维瞬态熔融池传热特性分析程序开发与验证[J]. 核动力工程,2019, 40(S2): 1-5.
    [9] FUKASAWA M, HAYAKAWA S, SAITO M. Thermal-hydraulic analysis for inversely stratified molten corium in lower vessel[J]. Journal of Nuclear Science and Technology, 2008, 45(9): 873-888. doi: 10.1080/18811248.2008.9711489
    [10] KHAROUA N, KHEZZAR L, NEMOUCHI Z, et al. LES study of the combined effects of groups of vortices generated by a pulsating turbulent plane jet impinging on a semi-cylinder[J]. Applied Thermal Engineering, 2017(114): 948-960.
    [11] VOLLER V R, PRAKASH C. A fixed-grid numerical modeling methodology for convection-diffusion mushy region phase- change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. doi: 10.1016/0017-9310(87)90317-6
    [12] 王溪,孟召灿,程旭. 基于OpenFOAM的熔融池自然对流传热与凝固数值研究[J]. 原子能科学技术,2015, 49(8): 1393-1398. doi: 10.7538/yzk.2015.49.08.1393
    [13] RÖSLER F, BRÜGGEMANN D. Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments[J]. Heat and Mass Transfer, 2011, 47(8): 1027-1033. doi: 10.1007/s00231-011-0866-9
    [14] GAUS-LIU X, MJASOEDOV A, CRON T, et al. In-vessel melt pool coolibility test—description and results of LIVE experiments[J]. Nuclear Engineering and Design, 2010(240): 3898-3903.
    [15] GAUS-LIU X, MJASOEDOV A, CRON T, et al. Test and simulation results of LIVE-L4+LIVE-L5L[R]. Germany: Karlsruhe Institute of Technology, 2011.
    [16] DINH T N, KONOVALIKHIN M J, SEHGAL B R. Core melt spreading on a reactor containment floor[J]. Progress in Nuclear Energy, 2000, 36(4): 405-468. doi: 10.1016/S0149-1970(00)00088-3
    [17] PHAM Q T, SEILER J M, COMBEAU H, et al. Modeling of heat transfer and solidification in LIVE-L3A experiment[J]. International Journal of Heat and Mass Transfer, 2013, 58(1-2): 691-701. doi: 10.1016/j.ijheatmasstransfer.2012.11.030
    [18] MARUYAMA Y, YAMANO N, MORIYAMA K, et al. Experimental study on in-vessel debris coolability in ALPHA program[J]. Nuclear Engineering and Design, 1999, 187(2): 241-254. doi: 10.1016/S0029-5493(98)00278-7
    [19] SEHGAL B, GIRI A, CHIKKANAGOUDAR U, et al. Experiments on in-vessel melt coolability in the EC-FOREVER program[J]. Nuclear Engineering and Design, 2006, 236(19): 2199-2210.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  311
  • HTML全文浏览量:  241
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-04
  • 修回日期:  2021-03-02
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回