Research on the Influence of 56Fe Evaluation Cross Section of CENDL-3.2 and ENDF/B-Ⅷ.0 on Shielding Calculation
-
摘要: CENDL-3.2评价库对56Fe非弹性散射截面进行了更新,为了验证其与ENDF/B-Ⅷ.0评价库中截面以及屏蔽计算能力的差异,通过NJOY2016程序对56Fe共振重造后的非弹性散射、总截面等微观截面进行了比较;并制作了多群截面,在56Fe非弹性散射能量范围对以56Fe为主要核素的3个系列屏蔽基准题ILL-Fe、OKTAVIAN-Fe、IPPE-Fe进行了屏蔽计算性能的比较。结果表明,CENDL-3.2评价库的非弹性散射截面在4~12 MeV能量范围内低于ENDF/B-Ⅷ.0评价库的结果;多群截面基准题验证表明,CENDL-3.2评价库计算结果与实验值总体符合较好;对于OKTAVIAN-Fe基准题,在0.1~1 MeV能量范围内两评价库计算结果吻合较好。此外,所有基准题验证结果都有共同的现象,即在56Fe非弹性散射截面占主要贡献的1~10 MeV能量范围内,CENDL-3.2的计算结果比ENDF/B-Ⅷ.0的计算结果偏高。
-
关键词:
- 56Fe /
- 非弹性散射截面 /
- CENDL-3.2评价库 /
- ENDF/B-Ⅷ.0评价库 /
- 屏蔽计算
Abstract: CENDL-3.2 Library updated the 56Fe inelastic scattering cross section. In order to verify the difference of cross-section and the shielding computing ability between the CENDL-3.2 Library and ENDF/B-Ⅷ.0 Library, NJOY2016 program was used to compare the microscopic cross section of 56Fe after resonance reconstruction, such as inelastic scattering, total cross section, and the multi-group cross section library was also made. Three series of shielding benchmarks, ILL-Fe, OKTAVIAN-Fe and IPPE-Fe, are selected in the range of 56Fe inelastic scattering energy, and 56Fe is used as the main nuclide. The results show that the inelastic cross section of CENDL-3.2 Library is lower than that of ENDF/B-Ⅷ.0 Library in the range of 4MeV~12MeV. The multi-group cross-section benchmark verification showed that the calculated results of CENDL-3.2 Library are in good agreement with the experimental values. For OKTAVIAN-Fe benchmark, the results of the two Libraries agree well in the range of 0.1MeV~1MeV. In addition, the same phenomenon is found in all the benchmark tests, that is, in the energy range of 1MeV~10MeV, where the 56Fe inelastic cross section is the main contribution, the results of CENDL-3.2 Library are higher than those of ENDF/B-Ⅷ.0 Library.-
Key words:
- 56Fe /
- Inelastic scattering cross section /
- CENDL-3.2 /
- ENDF/B-Ⅷ.0 /
- Shielding calculation
-
表 1 OKTAVIAN-Fe屏蔽装置材料组成
Table 1. Material Composition of OKTAVIAN-Fe Shielding Device
元素 核子密度/(b−1·cm−1) Fe 8.3579×10−2 Mn 7.6620×10−4 Si 3.8732×10−4 C 6.3004×10−4 P 3.0540×10−5 S 1.4749×10−5 表 2 ILL-Fe基准模型物理参数描述
Table 2. Description of Physical Parameters of ILL-Fe Benchmark Model
参数名 参数值 球壳外半径/cm 38.1 球壳内半径/cm 7.65 密度 /(g·cm−3) 7.87 核子密度/ (b−1·cm−1) 0.0849 表 3 IPPE-Fe基准题几何参数和核子密度
Table 3. Geometric Parameters and Nucleon Density of IPPE-Fe Benchmark
基准题 球壳几何参数 中子平均自由程/m 核子密度/(b−1·cm−1) 径向孔参数ri (li)/ cm (V’/V)平均值/% R/cm r/cm 壁厚/cm 1 4.5 2.0 2.5 0.5 840 2.0(2.5) 10.6 2 12.0 4.5 7.5 1.6 820 3.2(4), 3.0(3.5) 3.3 3 20.0 1.9 18.1 3.9 830 2.5(10.3), 1.9(7.8) 0.9 4 30.0 2.0 28.0 6.1 830 4(7), 2.5(7.8), 2.0(13.2) 0.6 -
[1] LEE C, YANG W S. MC2-3: multigroup cross section generation code for fast reactor analysis[J]. Nuclear Science and Engineering, 2017, 187(3): 268-290. doi: 10.1080/00295639.2017.1320893 [2] WENNER M T, HAGHIGHAT A, ADAMS J M, et al. Novel investigation of iron cross sections via spherical shell transmission measurements and particle transport calculations for material embrittlement studies[J]. Nuclear Science and Engineering, 2017, 170(3): 207-233. [3] CHADWICK M B, DUPONT E, BAUGE E, et al. The CIELO collaboration: neutron reactions on 1H, 16O, 56Fe, 235, 238U, and 239Pu[J]. Nuclear Data Sheets, 2014, 118: 1-25. doi: 10.1016/j.nds.2014.04.002 [4] 钱晶,葛智刚,刘廷进,等. 20MeV以下快中子与56Fe非弹性散射截面的分歧研究[J]. 原子核物理评论,2017, 34(3): 514-519. doi: 10.11804/NuclPhysRev.34.03.514 [5] GE Z G, XU R R, WU H C, et al. CENDL-3.2: The new version of Chinese general purpose evaluated nuclear data library[J]. EPJ Web of Conferences, 2020, 239: 09001. doi: 10.1051/epjconf/202023909001 [6] CHADWICK M B, HERMAN M, OBLOŽINSKÝ P, et al. ENDF/B-VII. 1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data[J]. Nuclear Data Sheets, 2011, 112(12): 2887-2996. doi: 10.1016/j.nds.2011.11.002 [7] BROWN D A, CHADWICK M B, CAPOTE R, et al. ENDF/B-VIII. 0: The 8th major release of the nuclear reaction data library with cielo-project cross sections, new standards and thermal scattering data[J]. Nuclear Data Sheets, 2018, 148: 1-142. doi: 10.1016/j.nds.2018.02.001 [8] MACFARLANE R, MUIR D W, BOICOURT R M, et al. The NJOY nuclear data processing system, version 2016: LA-UR-17-20093[R]. Los Alamos, United States: Los Alamos National Laboratory, 2017. [9] MACFARLANE R E. TRANSX 2: a code for interfacing MATXS cross-section libraries to nuclear transport codes: LA-12312-MS[R]. NM, United States: Los Alamos National Laboratory, 1992 [10] ENGLE JR W W. A users manual for ANISN: a one dimensional discrete ordinates transport code with anisotropic scattering: K-1693 [R]. United States: Oak Ridge Gaseous Diffusion Plant, 1967 [11] SUMITA K, TAKAHASHI A, HASHIKURA H, et al. Measurements of neutron leakage spectra from 50.32 cm radius iron sphere: A-83-07[R]. Japan: Osaka University, 1983. [12] HASHIKURA H, HAIKAWA K, TAKAHASHI A, et al. Neutron leakage spectra from a large iron sphere pulsed with 14 MeV neutrons[C]//Proceedings of the NEA Specialists' Meeting on Shielding Benchmarks, Saclay, France, 1984 [13] JOHNSON R H. Integral tests of neutron cross sections for iron, nobium, beryllium, and polyethylene[D]. Urbana, Illinois: University of Illinois at Urbana-Champaign, 1975. [14] WILLIAMS M L, ABOUGHANTOUS C, ASGARI M, et al. Transport calculations of neutron transmission through steel using ENDF/B-V, revised ENDF/B-V and ENDF/B-VI iron evaluations[J]. Annals of Nuclear Energy, 1991, 18(10): 549-565. doi: 10.1016/0306-4549(91)90055-3 [15] DEVKIN B V, KOBOZEV M G, SIMAKOV S P, et al. Neutron leakage spectra from iron spheres[C]//Proceedings of the 18th Symposium on Fusion Technology, 22-26 Aug 1994, Karlsruhe, 1994 [16] NUNNENMANN E, FISCHER U. V&V analyses of the GEANT4 Monte Carlo code toolkit with computational and experimental fusion neutronics benchmarks[J]. Fusion Engineering and Design, 2019, 146: 1579-1582. doi: 10.1016/j.fusengdes.2019.02.132