Research on Void Distribution Measurement of 5×5 Rod Bundle Channel Based on Wire Mesh Sensor
-
摘要: 为研究压水反应堆燃料组件棒束通道内的两相分布规律,设计并制造了适用于棒束通道的丝网传感器模块,开展了5×5棒束通道内空气-水泡状流的空泡分布测量实验,分析了棒束通道内空泡份额的分布规律及气泡尺寸对空泡分布的影响。实验结果表明,发生横升力方向反转的小气泡在壁面附近聚集、大尺寸气泡则聚集在子通道中心;常温常压下发生横升力方向反转的临界气泡直径在4~6 mm之间,证明了横升力模型在棒束通道中的适用性。Abstract: In order to study the two-phase distribution in the rod bundle channel, a wire mesh sensor module suitable for the rod bundle channel was designed and fabricated, and the experiment of measuring the void distribution of air-bubble flow in a 5×5 rod bundle channel was carried out. The distribution law of void fraction in rod bundle channel and the effect of bubble size on void distribution are analyzed. The experimental results show that the small bubbles with reversal of transverse lift direction gather near the wall, and the large bubbles gather in the center of the subchannel; The critical bubble diameter of transverse lift direction reversal at room temperature and pressure is between 4~6 mm, which proves the applicability of transverse lift model in rod bundle channel.
-
Key words:
- Rod bundle channel /
- Wire mesh sensor /
- Void distribution /
- Lift force model
-
表 1 时均截面空泡份额
Table 1. Time-averaged Cross-section Void Fraction
JG/(m·s−1) 空泡份额/% JS=0.531 m/s JS=0.884 m/s JS=1.238 m/s 0.008 0.48 0.47 0.44 0.020 1.08 1.05 1.01 0.039 1.92 1.89 1.89 -
[1] 阎昌琪. 气液两相流[M]. 哈尔滨: 哈尔滨工程大学出版社, 2017: 50-51. [2] 孙中宁, 范广铭, 王建军. 反应堆热工水力学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2017: 40. [3] YANG B W, HAN B, LIU A, et al. Recent challenges in subchannel thermal-hydraulics-CFD modeling, subchannel analysis, CHF experiments, and CHF prediction[J]. Nuclear Engineering and Design, 2019, 354: 110236. doi: 10.1016/j.nucengdes.2019.110236 [4] 程瑞琪,熊进标. 板状燃料组件进口堵流事故数值模拟[J]. 核动力工程,2020, 41(S2): 92-97. [5] 刘航,赖建永,李毅,等. 带定位格架的棒束通道内泡状流条件下界面浓度输运模型[J]. 核动力工程,2020, 41(S1): 87-91. [6] 李权,AVRAMOVA M,刘洋华,等. 全长尺寸5×5格架棒束通道两相流动特性研究[J]. 核动力工程,2017, 38(S2): 25-28. [7] WAITE B M. Mechanistic modeling of two-phase flow and heat transfer around light water reactor spacer grids - ProQuest[D]. New York: Rensselaer Polytechnic Institute, 2018. [8] FANG J, CAMBARERI J J, RASQUIN M, et al. Interface tracking investigation of geometric effects on the bubbly flow in PWR subchannels[J]. Nuclear Science and Engineering, 2019, 193(1-2): 46-62. doi: 10.1080/00295639.2018.1499280 [9] TOMIYAMA A, TAMAI H, ZUN I, et al. Transverse migration of single bubbles in simple shear flows[J]. Chemical Engineering Science, 2002, 57(11): 1849-1858. doi: 10.1016/S0009-2509(02)00085-4 [10] NEZU I, SANJOU M. PIV and PTV measurements in hydro-sciences with focus on turbulent open-channel flows[J]. Journal of Hydro-environment Research, 2011, 5(4): 215-230. doi: 10.1016/j.jher.2011.05.004 [11] PIETRUSKE H, PRASSER H M. Wire-mesh sensors for high-resolving two-phase flow studies at high pressures and temperatures[J]. Flow Measurement and Instrumentation, 2007, 18(2): 87-94. doi: 10.1016/j.flowmeasinst.2007.01.004 [12] ITO D, PRASSER H M, KIKURA H, et al. Uncertainty and intrusiveness of three-layer wire-mesh sensor[J]. Flow Measurement and Instrumentation, 2011, 22(4): 249-256. doi: 10.1016/j.flowmeasinst.2011.03.002 [13] 孙圆圆,李坤,李凯,等. 基于丝网传感器的气水两相流流型转换测量[J]. 传感技术学报,2020, 33(3): 364-369. doi: 10.3969/j.issn.1004-1699.2020.03.008 [14] 杨宜昂, 熊进标. 基于丝网技术的窄矩形通道流型研究[C]//第十六届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2019年学术年会论文集. 惠州: 中国科学院近代物理研究所, 2019: 12. [15] 杨宜昂,熊进标,张腾飞,等. 基于丝网技术的矩形通道空泡份额测量研究[J]. 核动力工程,2019, 40(6): 203-206. [16] LUCAS D, TOMIYAMA A. On the role of the lateral lift force in poly-dispersed bubbly flows[J]. International Journal of Multiphase Flow, 2011, 37(9): 1178-1190. doi: 10.1016/j.ijmultiphaseflow.2011.05.009 [17] WELLEK R M, AGRAWAL A K, SKELLAND A H P. Shape of liquid drops moving in liquid media[J]. AIChE Journal, 1966, 12(5): 854-862. doi: 10.1002/aic.690120506 [18] FORE L B, IBRAHIM B B, BEUS S G. Visual measurements of droplet size in gas–liquid annular flow[J]. International Journal of Multiphase Flow, 2002, 28(12): 1895-1910. doi: 10.1016/S0301-9322(02)00121-0