高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

管径与倾角对管束外含空气蒸汽冷凝传热影响研究

刘诗文 李毅 成翔 边浩志 曹博洋 丁铭

刘诗文, 李毅, 成翔, 边浩志, 曹博洋, 丁铭. 管径与倾角对管束外含空气蒸汽冷凝传热影响研究[J]. 核动力工程, 2022, 43(1): 92-96. doi: 10.13832/j.jnpe.2022.01.0092
引用本文: 刘诗文, 李毅, 成翔, 边浩志, 曹博洋, 丁铭. 管径与倾角对管束外含空气蒸汽冷凝传热影响研究[J]. 核动力工程, 2022, 43(1): 92-96. doi: 10.13832/j.jnpe.2022.01.0092
Liu Shiwen, Li Yi, Cheng Xiang, Bian Haozhi, Cao Boyang, Ding Ming. Study on the Effects of Tube Diameter and Inclination Angle on the Condensation Heat Transfer of Air-Containing Steam Outside the Tube Bundle[J]. Nuclear Power Engineering, 2022, 43(1): 92-96. doi: 10.13832/j.jnpe.2022.01.0092
Citation: Liu Shiwen, Li Yi, Cheng Xiang, Bian Haozhi, Cao Boyang, Ding Ming. Study on the Effects of Tube Diameter and Inclination Angle on the Condensation Heat Transfer of Air-Containing Steam Outside the Tube Bundle[J]. Nuclear Power Engineering, 2022, 43(1): 92-96. doi: 10.13832/j.jnpe.2022.01.0092

管径与倾角对管束外含空气蒸汽冷凝传热影响研究

doi: 10.13832/j.jnpe.2022.01.0092
详细信息
    作者简介:

    刘诗文(1992—),男,工程师,现主要从事核动力装置系统设计工作,E-mail: 348500645@qq.com

  • 中图分类号: TL332

Study on the Effects of Tube Diameter and Inclination Angle on the Condensation Heat Transfer of Air-Containing Steam Outside the Tube Bundle

  • 摘要: 通过对不同管径和倾角的3×3管束开展管外含空气蒸汽冷凝试验,研究了传热管管径和倾角影响管束外含空气蒸汽冷凝传热的基本规律。结果表明:管径和倾角的影响在不同压力范围内具有明显差异。在压力0.8 MPa以下,冷凝传热系数总体随管径和倾角的减小而增大,管径12 mm、0°倾角传热管的冷凝传热系数较管径19 mm、90°倾角的冷凝传热系数最大可增加29%。在压力0.8 MPa以上,冷凝传热系数随管径的减小而减小,最大可降低18%;随倾角的减小先减小后增大,在约60°倾角时,冷凝传热系数最小。

     

  • 图  1  试验装置示意图

    Figure  1.  Schematic Diagram of the Test Device

    图  2  不同管径下传热管束冷凝传热系数(θ=90°)

    Figure  2.  Condensation Heat Transfer Coefficient of Heat Transfer Tube Bundle under Different Tube Diameters (θ=90°)

    图  3  不同管径下传热管束冷凝传热系数(θ=30°)

    Figure  3.  Condensation Heat Transfer Coefficient of Heat Transfer Tube Bundle under Different Tube Diameters (θ=30°)

    图  4  不同倾角下管束冷凝传热系数

    Figure  4.  Condensation Heat Transfer Coefficient of Tube Bundle at Different Inclination Angles

  • [1] 张东洋. 竖直光管管外含空气蒸汽冷凝特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
    [2] BIAN H Z, SUN Z N, ZHANG N, et al. A new modified diffusion boundary layer steam condensation model in the presence of air under natural convection conditions[J]. International Journal of Thermal Sciences, 2019, 145: 105948. doi: 10.1016/j.ijthermalsci.2019.05.004
    [3] 焦保良. 浅谈国内外核电技术发展现状及前景[J]. 科技信息,2010(34): 346-347. doi: 10.3969/j.issn.1001-9960.2010.34.308
    [4] DE LA ROSA J C, ESCRIVÁ A, HERRANZ L E, et al. Review on condensation on the containment structures[J]. Progress in Nuclear Energy, 2009, 51(1): 32-66. doi: 10.1016/j.pnucene.2008.01.003
    [5] BIAN H Z, SUN Z N, ZHANG N, et al. A preliminary assessment on a two-phase steam condensation model in nuclear containment applications[J]. Annals of Nuclear Energy, 2018, 121: 615-625. doi: 10.1016/j.anucene.2018.08.012
    [6] BIAN H Z, SUN Z N, DING M, et al. Local phenomena analysis of steam condensation in the presence of air[J]. Progress in Nuclear Energy, 2017, 101: 188-198. doi: 10.1016/j.pnucene.2017.08.002
    [7] UCHIDA H, OYAMA A, TOGO Y. Evaluation of post-incident cooling systems of light water power reactors[R]. Japan: Tokyo University, 1964.
    [8] LIU H, TODREAS N E, DRISCOLL M J. An experimental investigation of a passive cooling unit for nuclear plant containment[J]. Nuclear Engineering and Design, 2000, 199(3): 243-255. doi: 10.1016/S0029-5493(00)00229-6
    [9] DEHBI A A. Analytical and experimental investigation of the effects of non-condensable gases on steam condensation under turbulent natural convection conditions[D]. USA: Massachusetts Institute of Technology, 1990.
    [10] FAN G M, TONG P, SUN Z N, et al. Development of a new empirical correlation for steam condensation rates in the presence of air outside vertical smooth tube[J]. Annals of Nuclear Energy, 2018, 113: 139-146. doi: 10.1016/j.anucene.2017.11.021
    [11] SU J Q, SUN Z N, FAN G M, et al. Experimental study of the effect of non-condensable gases on steam condensation over a vertical tube external surface[J]. Nuclear Engineering and Design, 2013, 262: 201-208. doi: 10.1016/j.nucengdes.2013.05.002
    [12] 边浩志,孙中宁,丁铭, 等. 含空气蒸汽冷凝换热特性的数值模拟分析[J]. 哈尔滨工程大学学报,2019, 40(2): 426-432.
    [13] 全标,边浩志,丁铭,等. 管束效应对含空气蒸汽冷凝传热影响数值分析[J]. 核动力工程,2019, 40(5): 61-66.
    [14] 杨世铭, 陶文铨. 传热学[M]. 第3版. 北京: 高等教育出版社, 1998: 447.
    [15] 约翰·道尔顿. 道尔顿分压定律[J]. 数理化学习,2019(12): 2.
  • 加载中
图(4)
计量
  • 文章访问数:  325
  • HTML全文浏览量:  102
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 修回日期:  2020-12-16
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回