Effect of Neutron Irradiation on Mechanical Properties of Accident-Tolerant Fuel FeCrAl Alloys
-
摘要: FeCrAl合金具有良好的抗高温氧化和力学性能,能够作为燃料包壳材料。为研究FeCrAl合金的辐照力学性能,开展了不同元素成分含量和2×1019 cm−2、8×1019 cm−2 2种中子注量辐照下的FeCrAl合金力学性能试验,并在室温和380℃下测试了FeCrAl合金的拉伸性能,获得了不同Cr和Al含量FeCrAl合金的抗拉强度和屈服强度,并研究了Al含量、Cr/Al含量配比及中子辐照对FeCrAl合金力学性能的影响。研究表明,FeCrAl合金强度随着Al含量增加大致呈增加趋势;经2×1019 cm−2中子辐照后,FeCrAl合金强度有较大提升;再经8×1019 cm−2中子辐照后,FeCrAl合金强度升高不明显。该研究结果为耐事故燃料(ATF)包壳材料的研发选型提供了重要的数据支撑。Abstract: FeCrAl alloy has good high-temperature oxidation resistance and mechanical properties and can be used as fuel cladding material. In order to study the irradiation mechanical properties of FeCrAl alloy, FeCrAl alloy mechanical properties test with different element contents and 2×1019 cm−2 and 8×1019 cm−2 neutron fluence irradiation was carried out, the tensile properties of FeCrAl alloys were tested at room temperature and 380℃, and the tensile strength and yield strength of FeCrAl alloys with different Cr and Al contents were obtained. The effects of Al content, Cr/Al content ratio and neutron irradiation on the mechanical properties of FeCrAl alloy were studied. The results show that the strength of FeCrAl alloy generally increases with the increase of Al content; After 2×1019 cm−2 neutron irradiation, the strength of FeCrAl alloy is greatly improved; After 8×1019 cm−2 neutron irradiation, the strength of FeCrAl alloy does not increase significantly. The research results provide important data support for the R&D and selection of accident-tolerant fuel cladding.
-
Key words:
- FeCrAl alloy /
- Accident-tolerant fuel (ATF) /
- Mechanical properties /
- Irradiation effect
-
-
[1] OTT L J, ROBB K R, WANG D. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions[J]. Journal of Nuclear Materials, 2014, 448(1-3): 520-533. [2] FIELD K G, GUSSEV M, YAMAMOTO Y, et al. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications[J]. Journal of Nuclear Materials, 2014, 454(1-3): 352-358. doi: 10.1016/j.jnucmat.2014.08.013 [3] ASTM International. Test methods for tension testing of metallic materials: ASTM E8/E8M-16ae1[S]. American Society for Testing and Materials, 2020. [4] ASTM International. Test methods for elevated temperature tension tests of metallic materials: ASTM E21-17e1[S]. American Society for Testing and Materials, 2019. [5] ZHOU X, GUO L, WEI Y, et al. Effect of aluminum content on dislocation loops in model FeCrAl alloys[J]. Nuclear Materials and Energy, 2019, 21: 100718. [6] FIELD K G, HU X, LITTRELL K C, et al. Radiation tolerance of neutron radiated model Fe-Cr-Al alloys[J]. Journal of Nuclear Materials, 2015, 465: 746-755. [7] FIELD K G, HU X, LITTRELL K C, et al. Stability of model Fe-Cr-Al alloys under the presence of neutron radiation: ORNL/TM-2014/451[R]. USA: Oak Ridge National Laboratory (ORNL), 2014. [8] PINT B A, TERRANI K A, BRADY M P, et al. High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments[J]. Journal of Nuclear Materials, 2013, 440(1-3): 420-427. doi: 10.1016/j.jnucmat.2013.05.047 [9] YAMAMOTO Y, FIELD K, SNEAD L. Optimization of nuclear grade FeCrAl fuel cladding for light water reactors[C]. Tennessee: Oak Ridge National Laboratory IAEA Technical Meeting, 2014. [10] BACHHAV, ODETTE M R, MARQUIS G. Microstructural changes in a neutron-irradiated Fe-15at. %Cr alloy[J]. Journal of Nuclear Materials, 2014, 36: 381-386. [11] FIELD K G, BRIGGS S A, SRIDHARAN K, et al. Mechanical properties of neutron- irradiated model and commercial FeCrAl alloys[J]. Journal of Nuclear Materials, 2017, 489: 118-128. [12] HALEY J C, BRIGGS S A, EDMONDSON P D, et al. Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys[J]. Acta Materialia, 2017, 136: 390-401.