高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多物理场耦合的U3Si2燃料与双层SiC包壳组合的轻水堆燃料性能分析

尹春雨 刘荣 焦拥军 邱晨杰 刘振海 秋博文 高士鑫 邢硕

尹春雨, 刘荣, 焦拥军, 邱晨杰, 刘振海, 秋博文, 高士鑫, 邢硕. 基于多物理场耦合的U3Si2燃料与双层SiC包壳组合的轻水堆燃料性能分析[J]. 核动力工程, 2022, 43(1): 102-109. doi: 10.13832/j.jnpe.2022.01.0102
引用本文: 尹春雨, 刘荣, 焦拥军, 邱晨杰, 刘振海, 秋博文, 高士鑫, 邢硕. 基于多物理场耦合的U3Si2燃料与双层SiC包壳组合的轻水堆燃料性能分析[J]. 核动力工程, 2022, 43(1): 102-109. doi: 10.13832/j.jnpe.2022.01.0102
Yin Chunyu, Liu Rong, Jiao Yongjun, Qiu Chenjie, Liu Zhenhai, Qiu Bowen, Gao Shixin, Xing Shuo. Fuel Performance Analysis of Light Water Reactor Based on the Combination of U3Si2 Fuel and Two-Layer SiC Cladding Based on Multi-Physical Field Coupling[J]. Nuclear Power Engineering, 2022, 43(1): 102-109. doi: 10.13832/j.jnpe.2022.01.0102
Citation: Yin Chunyu, Liu Rong, Jiao Yongjun, Qiu Chenjie, Liu Zhenhai, Qiu Bowen, Gao Shixin, Xing Shuo. Fuel Performance Analysis of Light Water Reactor Based on the Combination of U3Si2 Fuel and Two-Layer SiC Cladding Based on Multi-Physical Field Coupling[J]. Nuclear Power Engineering, 2022, 43(1): 102-109. doi: 10.13832/j.jnpe.2022.01.0102

基于多物理场耦合的U3Si2燃料与双层SiC包壳组合的轻水堆燃料性能分析

doi: 10.13832/j.jnpe.2022.01.0102
基金项目: 国家自然科学基金(11805070);广东省基础与应用基础研究基金(2020A1515010648)
详细信息
    作者简介:

    尹春雨(1982—),男,高级工程师,现主要从事燃料元件及其相关组件设计和研究工作,E-mail: yincy909@163.com

    通讯作者:

    刘 荣,E-mail: rliu290147@hotmail.com

  • 中图分类号: TL334

Fuel Performance Analysis of Light Water Reactor Based on the Combination of U3Si2 Fuel and Two-Layer SiC Cladding Based on Multi-Physical Field Coupling

  • 摘要: 基于COMSOL平台开发了一套基于多物理场全耦合的燃料性能分析程序,并通过径向功率分布模型对比验证了该程序的正确性与准确性;然后进一步分析了U3Si2燃料与双层SiC包壳组合、U3Si2燃料与锆合金包壳组合在反应堆正常运行工况下的性能,并与UO2燃料与锆合金的组合进行了对比分析。计算结果发现U3Si2燃料与锆合金包壳组合相比UO2燃料与锆合金的组合具有更低的燃料中心温度、裂变气体释放量及内压,但气隙闭合时间会提前;而U3Si2燃料与双层SiC包壳的组合相比U3Si2燃料与锆合金的组合具有更高的燃料中心温度、更大的裂变气体释放量及内压,且随着燃耗的增加,其燃料中心温度大幅增加,与锆合金包壳相比,双层SiC包壳能够有效延迟气隙闭合,缓解燃料与包壳的力学相互作用。

     

  • 图  1  各模型间信息传递流程图

    Figure  1.  Flow Chart of Information Transfer among Models

    图  2  燃料性能分析技术路线图

    Figure  2.  Fuel Performance Analysis Technology Roadmap

    图  3  二维轴对称UO2、U3Si2的几何模型和计算网格

    PL—单个燃料芯块长度;Pr—燃料芯块半径;PP—燃料芯块间间距;Dg—气隙宽度;CT—包壳厚度;Z—轴向坐标;R—径向坐标

    Figure  3.  Geometric Model and Computational Grid of 2D Axisymmetric UO2 and U3Si2

    图  4  CAMPUS程序与BISON程序对于径向功率分布因子的模拟结果的对比验证

    Figure  4.  Comparison and Verification of Simulation Results of Radial Power Distribution Factor between CAMPUS Program and BISON Program

    图  5  U3Si2与锆合金组合的燃料中心温度、燃料外表面温度以及包壳内表面温度变化情况

    Figure  5.  Changes of Fuel Center Temperature, Fuel Outer Surface Temperature and Inner Surface Temperature of Cladding of U3Si2 and Zirconium Alloy Combination

    图  6  U3Si2与锆合金组合的气隙大小变化情况

    Figure  6.  Air Gap Size Changes of U3Si2 and Zirconium Alloy Combination   

    图  7  U3Si2与锆合金组合的裂变气体释放量和内压变化情况    

    Figure  7.  Fission Gas Release and Internal Pressure Changes of U3Si2 and Zirconium Alloy Combination

    图  8  U3Si2燃料与双层SiC包壳组合的燃料中心温度、燃料外表面温度以及包壳内表面温度变化情况

    Figure  8.  Changes of Fuel Center Temperature, Fuel Outer Surface Temperature and Inner Surface Temperature of Cladding of U3Si2 Fuel and Two-layer SiC Cladding Combination

    图  9  U3Si2与双层SiC包壳组合的气隙厚度变化情况

    Figure  9.  Air Gap Thickness Changes of U3Si2 and Two-layer SiC Cladding Combination  

    图  10  400 MW·h/kg(U)燃耗下U3Si2与双层SiC包壳组合的应力及形变分布情况

    Figure  10.  Stress and Deformation Distribution of U3Si2 and Two-layer SiC Cladding Combination at 400 MW·h/kg(U) Burnup

    图  11  U3Si2与双层SiC包壳组合的裂变气体释放量和燃料元件内压变化情况

    Figure  11.  Changes of Fission Gas Release and Fuel Element Internal Pressure of U3Si2 and Two-layer SiC Cladding Combination

    表  1  模型设定参数

    Table  1.   Model Setting Parameters

    参数名参数值
    U3Si2−锆包壳U3Si2−双层SiC包壳
    有效燃料元件高度/cm11.9011.90
    燃料芯块半径/mm4.14.1
    气隙厚度/μm8080
    包壳内径/mm8.368.36
    包壳厚度/μm570750/250
    包壳外径/mm9.510.36
    气腔与燃料高度比值0.0450.045
    燃料富集度/%4.94.9
    初始燃料密度95%T.D95%T.D
    线功率/(W·cm−1)200200
    快中子注量率/(m2·s)−19.5×10179.5×1017
    冷凝剂压力/MPa15.515.5
    冷却剂温度/K530530
    初始氦气压强/MPa2.02.0
      T.D—燃料的理论密度
    下载: 导出CSV
  • [1] YUAN Y. The design of high power density annular fuel for LWRs[D]. Cambridge: Massachusetts Institute of Technology, 2004.
    [2] ZHOU W Z, LIU R, REVANKAR S T. Fabrication methods and thermal hydraulics analysis of enhanced thermal conductivity UO2-BeO fuel in light water reactors[J]. Annals of Nuclear Energy, 2015, 81: 240-248. doi: 10.1016/j.anucene.2015.02.044
    [3] YEO S, MCKENNA E, BANEY R, et al. Enhanced thermal conductivity of uranium dioxide-silicon carbide composite fuel pellets prepared by Spark Plasma Sintering (SPS)[J]. Journal of Nuclear Materials, 2013, 433(1-3): 66-73. doi: 10.1016/j.jnucmat.2012.09.015
    [4] WHITE J T, NELSON A T, DUNWOODY J T, et al. Thermophysical properties of U3Si2 to 1773 K[J]. Journal of Nuclear Materials, 2015, 464: 275-280. doi: 10.1016/j.jnucmat.2015.04.031
    [5] SINGH G, TERRANI K, KATOH Y. Thermo-mechanical assessment of full SiC/SiC composite cladding for LWR applications with sensitivity analysis[J]. Journal of Nuclear Materials, 2018, 499: 126-143. doi: 10.1016/j.jnucmat.2017.11.004
    [6] GAMBLE K A, BARANI T, PIZZOCRI D, et al. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions[J]. Journal of Nuclear Materials, 2017, 491: 55-66. doi: 10.1016/j.jnucmat.2017.04.039
    [7] LIU R, CAI J J, ZHOU W Z. Multiphysics modeling of thorium-based fuel performance with a two-layer SiC cladding in a light water reactor[J]. Annals of Nuclear Energy, 2020, 136: 107036. doi: 10.1016/j.anucene.2019.107036
    [8] LASSMANN K, O'CARROLL C, VAN DE LAAR J, et al. The radial distribution of plutonium in high burnup UO2 fuels[J]. Journal of Nuclear Materials, 1994, 208(3): 223-231. doi: 10.1016/0022-3115(94)90331-X
    [9] HALES J D, NOVASCONE S R, PASTORE G, et al. BISON theory manual the equations behind nuclear fuel analysis[R]. Idaho Falls: Idaho National Laboratory, 2013.
    [10] SHIMIZU H. The properties and irradiation behavior of U3Si2[R]. Canoga Park: Atomics International, 1965.
    [11] WHITE J T, NELSON A T, DUNWOODY J T, et al. Thermophysical properties of U3Si2 to 1773 K[J]. Journal of Nuclear Materials, 2015, 464: 275-280.
    [12] FINLAY M R, HOFMAN G L, SNELGROVE J L. Irradiation behaviour of uranium silicide compounds[J]. Journal of Nuclear Materials, 2004, 325(2-3): 118-128. doi: 10.1016/j.jnucmat.2003.11.009
    [13] CARVAJAL-NUNEZ U, SALEH T A, WHITE J T, et al. Determination of elastic properties of polycrystalline U3Si2 using resonant ultrasound spectroscopy[J]. Journal of Nuclear Materials, 2018, 498: 438-444. doi: 10.1016/j.jnucmat.2017.11.008
    [14] GAMBLE K A, PASTORE G, ANDERSSON D, et al. ATF material model development and validation for priority fuel concepts[D]. Idaho Falls: Idaho National Laboratory, 2019: 21-31.
    [15] MIELOSZYK A J. Assessing thermo-mechanical performance of ThO2 and SiC clad light water reactor fuel rods with a modular simulation tool[D]. Cambridge: Massachusetts Institute of Technology, 2015.
    [16] 李鸣,张瑞谦,何宗倍,等. 耐事故SiCf/SiC复合材料包壳管CVI+无模具NITE制备技术研究[J]. 核动力工程,2020, 41(S1): 169-173.
    [17] LIU R, PRUDIL A, ZHOU W Z, et al. Multiphysics coupled modeling of light water reactor fuel performance[J]. Progress in Nuclear Energy, 2016, 91: 38-48. doi: 10.1016/j.pnucene.2016.03.030
    [18] 莫华均,张伟,吴璐,等. 耐事故UO2基复合燃料芯块的研发进展[J]. 核动力工程,2020, 41(2): 36-39.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  154
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-21
  • 修回日期:  2021-08-05
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回