Fuel Performance Analysis of Light Water Reactor Based on the Combination of U3Si2 Fuel and Two-Layer SiC Cladding Based on Multi-Physical Field Coupling
-
摘要: 基于COMSOL平台开发了一套基于多物理场全耦合的燃料性能分析程序,并通过径向功率分布模型对比验证了该程序的正确性与准确性;然后进一步分析了U3Si2燃料与双层SiC包壳组合、U3Si2燃料与锆合金包壳组合在反应堆正常运行工况下的性能,并与UO2燃料与锆合金的组合进行了对比分析。计算结果发现U3Si2燃料与锆合金包壳组合相比UO2燃料与锆合金的组合具有更低的燃料中心温度、裂变气体释放量及内压,但气隙闭合时间会提前;而U3Si2燃料与双层SiC包壳的组合相比U3Si2燃料与锆合金的组合具有更高的燃料中心温度、更大的裂变气体释放量及内压,且随着燃耗的增加,其燃料中心温度大幅增加,与锆合金包壳相比,双层SiC包壳能够有效延迟气隙闭合,缓解燃料与包壳的力学相互作用。Abstract: Based on COMSOL platform, a fuel performance analysis program based on multi-physical field full coupling is developed, and the correctness and accuracy of the program are verified by comparing with the radial power distribution model; Then the performances of the combinations of U3Si2 fuel and two-layer SiC cladding, U3Si2 fuel and zirconium alloy cladding under normal reactor operating conditions are further analyzed and compared with the combination of UO2 fuel and zirconium alloy. The calculation results show that the combination of U3Si2 fuel and zirconium alloy cladding has lower fuel center temperature, fission gas release and internal pressure than that of UO2 fuel and zirconium alloy, but the air gap closing time will be earlier; The combination of U3Si2 fuel and two-layer SiC cladding has higher fuel center temperature, greater fission gas release and internal pressure than the combination of U3Si2 fuel and zirconium alloy, and its fuel center temperature increases significantly with the increase of burnup. Compared with zirconium alloy cladding, two-layer SiC cladding can effectively delay the closing of air gap and alleviate the mechanical interaction between fuel and cladding.
-
Key words:
- U3Si2 fuel /
- Two-layer SiC cladding /
- Multi-physical field /
- Fuel performance
-
表 1 模型设定参数
Table 1. Model Setting Parameters
参数名 参数值 U3Si2−锆包壳 U3Si2−双层SiC包壳 有效燃料元件高度/cm 11.90 11.90 燃料芯块半径/mm 4.1 4.1 气隙厚度/μm 80 80 包壳内径/mm 8.36 8.36 包壳厚度/μm 570 750/250 包壳外径/mm 9.5 10.36 气腔与燃料高度比值 0.045 0.045 燃料富集度/% 4.9 4.9 初始燃料密度 95%T.D 95%T.D 线功率/(W·cm−1) 200 200 快中子注量率/(m2·s)−1 9.5×1017 9.5×1017 冷凝剂压力/MPa 15.5 15.5 冷却剂温度/K 530 530 初始氦气压强/MPa 2.0 2.0 T.D—燃料的理论密度 -
[1] YUAN Y. The design of high power density annular fuel for LWRs[D]. Cambridge: Massachusetts Institute of Technology, 2004. [2] ZHOU W Z, LIU R, REVANKAR S T. Fabrication methods and thermal hydraulics analysis of enhanced thermal conductivity UO2-BeO fuel in light water reactors[J]. Annals of Nuclear Energy, 2015, 81: 240-248. doi: 10.1016/j.anucene.2015.02.044 [3] YEO S, MCKENNA E, BANEY R, et al. Enhanced thermal conductivity of uranium dioxide-silicon carbide composite fuel pellets prepared by Spark Plasma Sintering (SPS)[J]. Journal of Nuclear Materials, 2013, 433(1-3): 66-73. doi: 10.1016/j.jnucmat.2012.09.015 [4] WHITE J T, NELSON A T, DUNWOODY J T, et al. Thermophysical properties of U3Si2 to 1773 K[J]. Journal of Nuclear Materials, 2015, 464: 275-280. doi: 10.1016/j.jnucmat.2015.04.031 [5] SINGH G, TERRANI K, KATOH Y. Thermo-mechanical assessment of full SiC/SiC composite cladding for LWR applications with sensitivity analysis[J]. Journal of Nuclear Materials, 2018, 499: 126-143. doi: 10.1016/j.jnucmat.2017.11.004 [6] GAMBLE K A, BARANI T, PIZZOCRI D, et al. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions[J]. Journal of Nuclear Materials, 2017, 491: 55-66. doi: 10.1016/j.jnucmat.2017.04.039 [7] LIU R, CAI J J, ZHOU W Z. Multiphysics modeling of thorium-based fuel performance with a two-layer SiC cladding in a light water reactor[J]. Annals of Nuclear Energy, 2020, 136: 107036. doi: 10.1016/j.anucene.2019.107036 [8] LASSMANN K, O'CARROLL C, VAN DE LAAR J, et al. The radial distribution of plutonium in high burnup UO2 fuels[J]. Journal of Nuclear Materials, 1994, 208(3): 223-231. doi: 10.1016/0022-3115(94)90331-X [9] HALES J D, NOVASCONE S R, PASTORE G, et al. BISON theory manual the equations behind nuclear fuel analysis[R]. Idaho Falls: Idaho National Laboratory, 2013. [10] SHIMIZU H. The properties and irradiation behavior of U3Si2[R]. Canoga Park: Atomics International, 1965. [11] WHITE J T, NELSON A T, DUNWOODY J T, et al. Thermophysical properties of U3Si2 to 1773 K[J]. Journal of Nuclear Materials, 2015, 464: 275-280. [12] FINLAY M R, HOFMAN G L, SNELGROVE J L. Irradiation behaviour of uranium silicide compounds[J]. Journal of Nuclear Materials, 2004, 325(2-3): 118-128. doi: 10.1016/j.jnucmat.2003.11.009 [13] CARVAJAL-NUNEZ U, SALEH T A, WHITE J T, et al. Determination of elastic properties of polycrystalline U3Si2 using resonant ultrasound spectroscopy[J]. Journal of Nuclear Materials, 2018, 498: 438-444. doi: 10.1016/j.jnucmat.2017.11.008 [14] GAMBLE K A, PASTORE G, ANDERSSON D, et al. ATF material model development and validation for priority fuel concepts[D]. Idaho Falls: Idaho National Laboratory, 2019: 21-31. [15] MIELOSZYK A J. Assessing thermo-mechanical performance of ThO2 and SiC clad light water reactor fuel rods with a modular simulation tool[D]. Cambridge: Massachusetts Institute of Technology, 2015. [16] 李鸣,张瑞谦,何宗倍,等. 耐事故SiCf/SiC复合材料包壳管CVI+无模具NITE制备技术研究[J]. 核动力工程,2020, 41(S1): 169-173. [17] LIU R, PRUDIL A, ZHOU W Z, et al. Multiphysics coupled modeling of light water reactor fuel performance[J]. Progress in Nuclear Energy, 2016, 91: 38-48. doi: 10.1016/j.pnucene.2016.03.030 [18] 莫华均,张伟,吴璐,等. 耐事故UO2基复合燃料芯块的研发进展[J]. 核动力工程,2020, 41(2): 36-39.