Development of γ Radiation Field Calculation Platform for Nuclear Equipment Identification Device
-
摘要: 为更广泛、更方便地解决实际工作中的辐射场计算问题,采用有效可靠的计算模型以及计算机数据管理和数据可视化技术,并利用贪心算法快速求解复杂方程,开发了通用的γ辐射场计算平台,该平台实现了放射源管理、三维显示放射源布置和辐射场剂量率水平以及自动生成布置方案等功能。实验表明,用该平台自动生成的方案布置的γ辐射场能够满足核级设备γ辐照鉴定的要求。Abstract: In order to solve the problem of radiation field calculation in practical work more widely and conveniently, an effective and reliable calculation model, computer data management and data visualization technology are adopted, and greedy algorithm is used to quickly solve complex equations. A general γ radiation field calculation platform is developed, which realizes the functions of radiation source management, three-dimensional display of radiation source layout, dose rate level of radiation field and automatic generation of layout scheme. Experiments show that the γ radiation field automatically generated by the platform can meet the requirements of γ radiation identification of nuclear equipment.
-
Key words:
- γ irradiation identification /
- Radiation field layout /
- Greedy algorithm
-
表 1 核级设备辐照鉴定试验的剂量学条件
Table 1. Dosimetry Conditions of Nuclear Equipment Irradiation Identification Test
辐照设备所在空
间剂量率/(Gy·s−1)辐射场空间剂量
分布不均匀度辐照剂量/kGy 正常工况 事故模拟工况 0.28±0.14 <3 250 600 表 2 辐射场的部分理论计算结果与实测值 Gy/s
Table 2. Part of the Theoretical Calculation Results and Measured Values of Radiation Field
(X,Y,Z) (−352,−191,1150) (−439,−239,1150) (−192,57,1150) (−384,114,1150) (−479,142,1150) (−95,176,1150) (−191,352,1150) 理论值 0.25 0.25 0.23 0.25 0.26 0.22 0.22 实测值 0.23 0.22 0.22 0.23 0.24 0.22 0.21 (X,Y,Z) (−352,−191,950) (−439,−239,950) (−192,57,950) (−384,114,950) (−479,142,950) (−95,176,950) (−191,352,950) 理论值 0.28 0.28 0.25 0.28 0.29 0.25 0.25 实测值 0.26 0.24 0.25 0.25 0.26 0.24 0.24 (X,Y,Z) (−352,−191,750) (−439,−239,750) (−192,57,750) (−384,114,750) (−479,142,750) (−95,176,750) (−191,352,750) 理论值 0.30 0.31 0.26 0.28 0.28 0.26 0.27 实测值 0.28 0.3 0.25 0.26 0.24 0.25 0.26 (X,Y,Z) (−352,−191,550) (−439,−239,550) (−192,57,950) (−384,114,550) (−479,142,550) (−95,176,550) (−191,352,550) 理论值 0.3 0.32 0.25 0.26 0.26 0.25 0.26 实测值 0.28 0.3 0.25 0.26 0.24 0.25 0.26 (X,Y,Z)—辐射场内重铬酸钾(银)剂量计测量点的位置坐标,mm 表 3 辐射场的剂量率理论计算值与实际测量值对比
Table 3. Comparisons between Theoretical Calculation Values and Practical Measurements of Radiation Field Dose Rate
对比项 理论计算值 实际测量值 最大值/(Gy·s−1) 0.33 0.37 最小值/(Gy·s−1) 0.14 0.15 平均值/(Gy·s−1) 0.25 0.25 测点最大正偏差/% 17.3 测点最大负偏差/% −22.2 -
[1] 刘吉珍,龚随军,王旭,等. 1E级设备γ辐照鉴定技术研究[J]. 原子能科学技术,2015, 49(3): 560-566. doi: 10.7538/yzk.2015.49.03.0560 [2] 康桂花. 计算概论[M]. 北京: 中国铁道出版社, 2016: 123-124. [3] French Association. Design and construction rules for electrical components of nuclear islands: RCC-E-2005[S]. French: AFCEN, 2005: 53 [4] 谢明亮,杨森权,彭波,等. 基于体素化点核算法的三维辐射场计算应用研究[J]. 核动力工程,2020, 41(S1): 82-86. [5] 王宋,杨永新,鲁昌兵,等. 大尺度空间辐射场计算减方差技术研究[J]. 核动力工程,2018, 39(6): 116-121. [6] 叶宏生. 重铬酸钾(银)剂量计[J]. 原子能科学技术,1994, 28(3): 284.