Development and Verification of Radiation Shielding Optimization Design Platform for Marine Reactor
-
摘要: 船用堆对核反应堆屏蔽设计提出了更高的要求,传统辐射屏蔽设计方法及设计软件已不能满足要求。为了得到更加精确的辐射屏蔽设计,本文基于开源的SALOME框架建立了一套集“几何建模-材料建模-屏蔽优化-结果可视化”功能为一体的船用堆辐射屏蔽多目标优化平台——MOSRT。MOSRT平台可实现屏蔽结构三维CAD实体建模、基于遗传算法的辐射屏蔽多目标优化以及屏蔽计算结果剂量场三维可视化。基于Savannah和MRX船用堆模型对MOSRT平台进行了辐射屏蔽优化验证,优化方案与初始方案相比,在剂量、质量、体积方面均得到了良好的优化效果,证明了MOSRT平台初步具备辐射屏蔽优化设计功能,可为船用堆工程及概念屏蔽设计提供辅助设计手段。Abstract: Marine reactor puts forward higher requirements for nuclear reactor shielding design, and the traditional radiation shielding design methods and design software can no longer meet the requirements. In order to obtain more accurate radiation shielding design, this paper establishes a multi-objective optimization platform for radiation shielding of marine reactor-MOSRT, which integrates the functions of “geometric modeling-material modeling-shielding optimization-result visualization” based on the open source SALOME framework. MOSRT platform can realize 3D CAD solid modeling of shielding structure, multi-objective optimization of radiation shielding based on genetic algorithm and 3D visualization of dose field of shielding calculation results. Based on Savannah and MRX marine reactor model, the radiation shielding optimization verification of MORST platform is carried out. Compared with the initial scheme, the optimization scheme has achieved good optimization results in dose, mass and volume. It is proved that MOSRT platform initially has the function of radiation shielding optimization design, which can provide auxiliary design means for marine reactor engineering and conceptual shielding design.
-
Key words:
- Marine reactor /
- MOSRT platform /
- Radiation shielding /
- Multi-objective optimization
-
表 1 Savannah反应堆的初始屏蔽参数
Table 1. Initial Shielding Parameters of the Savannah Reactor
屏蔽层编号 外半径/cm 材料类型 材料密度/(g·cm−3) 1 88.30 H2O 1.00 2 90.80 S-S 7.92 3 96.50 H2O 1.00 4 101.60 S-S 7.92 5 113.50 H2O 1.00 6 116.00 S-S 7.92 7 123.60 H2O 1.00 8 138.80 S-S 7.92 9 148.80 Air 0.0012 10 149.80 S-S 7.92 11 232.60 H2O 1.00 12 234.10 S-S 7.92 13 235.60 Pb 11.35 表 2 多目标优化解集的目标函数值
Table 2. Objective Function Values for the Multi-objective Optimization Solutions
优化方案编号 无量纲化目标值 目标函数值 fR(X) fW(X) fV(X) FR(X)/[(μSv/h)/(n/s)] FW(X)/g FV(X)/cm3 初始方案 1.0000 1.0000 1.0000 7.5828×10−13 5.3858×107 2.9226×107 1 0.3824 0.6103 0.3951 2.8995×10−13 3.2872×107 1.1547×107 2 0.7080 0.6076 0.4390 5.3687×10−13 3.2723×107 1.2831×107 3 0.1997 0.6692 0.4158 1.5141×10−13 3.6041×107 1.2152×107 4 0.1488 0.9868 0.3912 1.1282×10−13 5.3149×107 1.1434×107 5 0.0230 0.8508 0.5601 1.7471×10−14 4.5822×107 1.6368×107 6 0.6617 0.6999 0.3740 5.0172×10−13 3.7694×107 1.0932×107 7 0.0039 0.9857 0.5164 2.9382×10−15 5.3087×107 1.5093×107 8 0.3580 0.5911 0.4844 2.7148×10−13 3.1835×107 1.4157×107 9 0.0024 0.9348 0.6113 1.7944×10−15 5.0347×107 1.7866×107 10 0.3773 0.6565 0.3832 2.8609×10−13 3.5359×107 1.1199×107 11 0.0534 0.7885 0.4751 4.0457×10−14 4.2468×107 1.3886×107 12 0.0106 0.9648 0.5105 8.0152×10−15 5.1960×107 1.4919×107 13 0.5404 0.5243 0.5316 4.0979×10−13 2.8236×107 1.5537×107 14 0.1660 0.6513 0.5067 1.2587×10−13 3.5079×107 1.4809×107 15 0.0112 0.9529 0.4586 8.5181×10−15 5.1321×107 1.3404×107 16 0.9798 0.5839 0.3777 7.4299×10−13 3.1447×107 1.1039×107 17 0.9528 0.6028 0.4204 7.2250×10−13 3.2466×107 1.2287×107 18 0.2715 0.8554 0.3976 2.0586×10−13 4.6070×107 1.1622×107 19 0.0498 0.8820 0.4851 3.7763×10−14 4.7501×107 1.4178×107 20 0.0829 0.6738 0.4859 6.2885×10−14 3.6288×107 1.4200×107 表 3 多目标优化方案屏蔽设计参数
Table 3. Shielding Design Parameters for Multi-objective Optimization Scheme
屏蔽层 6号方案 9号方案 13号方案 外径/cm 材料类型 密度/(g·cm−3) 外径/cm 材料类型 密度/(g·cm−3) 外径/cm 材料类型 密度/(g·cm−3) 1 85.33 B-PE 1.22 84.74 B-PE 1.22 93.68 B-PE 1.22 2 85.67 Be 1.85 90.53 C-S 7.82 97.68 C-S 7.82 3 100.78 B-PE 1.22 94.72 Be 1.85 102.87 Be 1.85 4 104.06 Pb 11.35 103.73 B-PE 1.22 109.13 B-PE 1.22 5 106.46 Be 1.85 105.98 Pb 11.35 109.45 Pb 11.35 6 115.49 S-S 7.92 106.57 Be 1.85 115.48 Be 1.85 7 121.38 B-PE 1.22 116.13 S-S 7.92 117.58 B-PE 1.22 8 124.05 B-S 7.70 125.67 B-PE 1.22 119.46 B-S 7.70 9 130.27 B-PE 1.22 131.71 B-S 7.70 127.24 B-PE 1.22 10 131.44 W 19.35 138.11 B-PE 1.22 132.58 W 19.35 11 134.04 Gd 7.90 153.05 W 19.35 133.16 Gd 7.90 12 134.89 B-PE 1.22 157.26 Gd 7.90 141.25 B-PE 1.22 13 — — — 158.71 B-PE 1.22 — — — 注:“—”表示无数据 表 4 MRX反应堆辐射屏蔽优化方案目标值
Table 4. Target Value of Radiation Shielding Optimization Scheme for MRX Reactor
方案 体积/cm3 中子剂量率/(μSv·h−1) 光子剂量率/(μSv·h−1) 总剂量率/(μSv·h−1) 质量/107g 初始方案 1.57639×107 2.65 3.71 6.36 4.471 剂量率最小方案 1.35962×107 0.55 0.18 0.73 3.761 质量最小方案 1.45129×107 1.92 3.47 5.39 2.873 体积最小方案 1.15783×107 3.13 1.84 4.97 3.730 “剂量-质量-体积”
综合最优方案1.34687×107 1.53 2.23 3.76 3.562 表 5 MRX初始方案与剂量最优方案径向尺寸对比
Table 5. Comparison of Radial Dimensions between MRX Initial Scheme and Dose Optimal Scheme
初始方案材料 优化方案
材料初始方案厚度/cm 优化方案厚度/cm S-S S-S 15.00 10.42 H2O H2O 10.00 24.61 S-S S-S 5.00 8.46 Air S-S 10.00 5.81 S-S H2O 5.00 20.32 H2O S-S 10.00 8.79 S-S Air 47.00 10.56 H2O S-S 68.00 7.82 S-S S-S 10.00 3.37 -
[1] Open Cascade. Welcome to the www. salome-platform. org-SALOME Platform[EB/OL]. (2019-9-10)[2020-11-25]. https://www.salome-platform.org. [2] RIBES A, CAREMOLI C. Salomé platform component model for numerical simulation[C]//31st Annual International Computer Software and Applications Conference (COMPSAC 2007). Beijing, China: IEEE, 2007: 553-564. [3] PELOWITZ D B. MCNPXTM user’s manual version 2.5. 0[Z]. USA: Los Alamos National Laboratory, 2005. [4] 陈珍平,谢金森,郭倩,等. 多功能辐射输运模拟仿真平台开发与初步应用[J]. 南华大学学报:自然科学版,2018, 32(3): 13-17. [5] OKTEM M H, SAKA B. Design of multilayered cylindrical shields using a genetic algorithm[J]. IEEE Transactions on Electromagnetic Compatibility, 2001, 43(2): 170-176. doi: 10.1109/15.925537 [6] ASBURY S T. Multi-grid genetic algorithms for optimal radiation shield design[D]. USA: The University of Michigan, 2012. [7] DEB K, PRATAP A, ARARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017 [8] 曹奇锋,张震宇,陈珍平,等. 基于非支配排序遗传算法的辐射屏蔽多目标优化方法研究[J]. 核动力工程,2020, 41(1): 167-171. [9] BLIZARD E P, BLOSSER T V, FREESTONE R M . The radiation leakage survey of the shield of the nuclear ship savannah[Z]. USA: Oak Ridge National Laboratory, 1962. [10] YAMAJI A, SAKO K. Shielding design to obtain compact marine reactor[J]. Journal of Nuclear Science and Technology, 1994, 31(6): 510-520. doi: 10.1080/18811248.1994.9735185