Optimization Design of Passive Residual Heat Removal System for MSR Based on Air Cooling
-
摘要: 上海应用物理研究所基于TRISO包覆球形颗粒燃料与液态氟盐提出了基于钍基熔盐固态试验堆(TMSR-SF1)技术方案,其中一个重要的工作是非能动余热排出系统(PRHRS)设计。由于熔盐与水的不兼容特性,以及其高运行温度,采用空气作为最终热阱来设计PRHRS成为必然。为实现系统最简化、体积最小化以及排热与保温兼顾的设计目标,本文从MSR堆芯活性区到外界空气热阱传热过程的模型入手,建立了PRHRS优化设计模型,获得了优化设计方案,并基于改进的RELAP5/MOD4.0程序(针对TMSR-SF1的专门改进程序)开展了PRHRS容量论证评价,经计算分析,PRHRS容量设计合理,可确保反应堆全厂断电(SBO)后排热安全。
-
关键词:
- 熔盐堆(MSR) /
- 钍基熔盐固态试验堆(TMSR-SF1) /
- 非能动余热排出系统(PRHRS) /
- 优化设计 /
- 安全分析
Abstract: Shanghai Institute of Applied Physics proposed a technical solution based on the Thorium-based Molten Salt Solid-state Test Reactor (TMSR-SF1) based on TRISO-coated spherical particulate fuel and liquid fluoride salt. One of the most important works is the design of passive residual heat removal system (PRHRS). Because of the incompatibility between molten salt and water and its high operating temperature, it is necessary to use air as the final heat sink to design PRHRS. In order to achieve the design objectives of system simplification, volume minimization and consideration of heat removal and insulation, starting with the model of heat transfer process from MSR core active zone to external air heat sink, this paper establishes the PRHRS optimization design model, obtains the optimization design scheme, and based on the improved RELAP5/MOD4.0 code (special improved code for TMSR-SF1) carries out the demonstration and evaluation of PRHRS capacity. Calculation and analysis show that the design of PRHRS capacity is reasonable, which can ensure the heat removal safety after the reactor SBO.-
Key words:
- MSR /
- TMSR-SF1 /
- PRHRS /
- Optimization design /
- Safety analysis
-
表 1 气体自然对流换热计算公式
Table 1. Natural Convection Heat Exchange Equations for Gas
经验关系式 适用条件 Nu=0.11(GrPr)0.29 GrPr=6000~106;Pr=1~5000 Nu=0.4(GrPr)0.2 GrPr=106~108;Pr=1~5000 Pr—普朗特数;Gr—格拉晓夫数;Nu—努赛尔数 表 2 TMSR-SF1在SBO事故下PRHRS容量评价的验收准则
Table 2. TMSR-SF1 Acceptance Criteria for PRHRS Capacity Evaluation under SBO Accident
参数 限值 熔盐峰值温度/℃ 700 燃料球峰值温度/℃ 1250 表 3 SBO事故发生后事故序列
Table 3. Accident Sequence after SBO Accident
时间/s 事件序列 0 SBO,主泵停运 1.0 冷却剂流量降低,达到停堆整定值 2.2 反应堆紧急停堆 2.2 PRHRS的进气挡板开始逐步增大开度 62.2 PRHRS的进气挡板达到最大开度 -
[1] ROBERTSON R C. Conceptual design study of a single-fluid molten-salt breeder reactor: ORNL-4541[R]. USA: ORNL, 1971. [2] ALLEN T, MCGAHA J, BALL S, et al. FHR functional requirements and LBE identification white paper: integrated research project workshop 1: UCBTH-12-001[R]. Berkeley: Department of Nuclear Engineering University of California, Berkeley, 2013. [3] 梅牡丹,邵世威,何兆忠,等. 固态钍基熔盐堆概率安全评价始发事件分析研究[J]. 核技术,2014, 37(9): 45-52. [4] FU Y, SUN Q, ZHOU C, et al. Thermal hydraulics analysis of the fluoride-salt-cooled, high-temperature reactor[C]//Proceedings of the 2017 25th International Conference on Nuclear Engineering (ICONE25). Shanghai: ASME, 2017. [5] PEREZ M, ALLISON C M, WAGNER R J, et al. The development of RELAP/SCDAPSIM/MOD4.0 for advanced fluid systems design analysis[C]//Proceedings of the 23th International Conference on Nuclear Engineering. Chiba, 2015.