Study on the Creep Damage Constitutive Models of 16MND5 Steel for Domestic Reactor Pressure Vessel
-
摘要: 为了获得反应堆压力容器(RPV)材料在高温下的蠕变行为,保证RPV在严重事故工况下的完整性,本研究对国产RPV用16MND5钢的高温蠕变性能进行了测试,获得了600~900℃下材料的蠕变性能,并基于应变强化的基本蠕变本构模型与基于延性耗竭理论的蠕变损伤模型,建立了适用于16MND5钢的蠕变损伤本构模型,给出了材料的蠕变损伤模型参数。结果表明,本文提出的蠕变损伤本构模型的有限元模拟数据与试验数据符合性较好,验证了此蠕变损伤模型的正确性。该方法可用于严重事故情况下RPV的蠕变损伤分析,为RPV的完整性分析提供支持。
-
关键词:
- 反应堆压力容器(RPV) /
- 完整性分析 /
- 高温蠕变 /
- 蠕变损伤本构模型.
Abstract: In order to obtain the creep behavior of reactor pressure vessel (RPV) materials at high temperature and ensure the integrity of RPV under severe accident conditions, the high temperature creep properties of 16MND5 steel for domestic RPV were tested, and the creep property of the material at 600~900℃ was obtained. Based on the basic creep constitutive model of strain strengthening and the creep damage model based on ductile depletion theory, a creep damage constitutive model suitable for 16MND5 material is established, and the creep damage model parameters are given. Results show that the finite element simulation data of the creep damage constitutive model proposed in this paper are in good agreement with the experimental data, which verifies the correctness of the creep damage model. This method can be used for the creep damage analysis of RPV under serious accidents, and provide support for the integrity analysis of RPV. -
表 1 国产RPV用16MND5钢在600℃以上的屈服强度
Table 1. Yield Strength of 16MND5 Steel for Domestic RPV above 600℃
温度/℃ 600 700 800 900 1000 屈服强度/MPa 243.3 99.3 50.7 36.0 23.5 表 2 不同温度下16MND5钢的蠕变损伤本构模型参数
Table 2. Creep Damage Constitutive Model Parameters of 16MND5 Steel at Different Temperatures
温度/℃ 蠕变参数 A n1 n2 n3 m d1 d2 d3 β 600 5.73×10−22 6.622 9.362 −0.041 −0.550 −11430.075 44826.022 −0.009 0.36 700 5.73×10−22 8.115 7.833 −0.070 −0.865 655.602 84209.310 −0.081 0.45 800 5.73×10−22 9.917 13.487 −0.154 −0.865 7040.816 191043.500 −0.212 0.45 900 5.73×10−22 10.001 11.464 −0.126 −0.865 158.151 36234.250 −0.183 0.45 -
[1] 武志玮,宁冬,姚伟达. 严重事故下反应堆压力容器材料高温蠕变研究进展[J]. 核安全,2011(2): 20-24. doi: 10.3969/j.issn.1672-5360.2011.02.005 [2] WILLSCHÜTZ H G, ALTSTADT E, SEHGAL B R, et al. Coupled thermal structural analysis of LWR vessel creep failure experiments[J]. Nuclear Engineering and Design, 2001, 208(3): 265-282. doi: 10.1016/S0029-5493(01)00364-8 [3] VILLANUEVA W, TRAN C T, KUDINOV P. Coupled thermo-mechanical creep analysis for boiling water reactor pressure vessel lower head[J]. Nuclear Engineering and Design, 2012, 249: 146-153. doi: 10.1016/j.nucengdes.2011.07.048 [4] THINNES G L, KORTH G E, CHAVEZ S A, et al. High-temperature creep and tensile data for pressure vessel steels SA533B1 and SA508-CL2[J]. Nuclear Engineering and Design, 1994, 148(2-3): 343-350. doi: 10.1016/0029-5493(94)90119-8 [5] DEVOS J, CATHERINE C S, POETTE C, et al. CEA programme to model the failure of the lower head in severe accidents[J]. Nuclear Engineering and Design, 1999, 191(1): 3-15. doi: 10.1016/S0029-5493(99)00049-7 [6] 谢志刚,杨建国,贺艳明,等. 相变温度下(800℃)核电设备用A508-Ⅲ钢的蠕变损伤及本构方程研究[J]. 核动力工程,2016, 37(5): 33-39. [7] 罗娟,罗家成,李朋洲,等. 堆芯熔化严重事故下反应堆压力容器下封头高温蠕变分析[J]. 核动力工程,2019, 40(2): 37-41. [8] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 单轴拉伸蠕变试验方法: GB/T 2039—2012[S]. 北京: 中国标准出版社, 2013. [9] WEN J F, TU S T, GAO X L, et al. New model for creep damage analysis and its application to creep crack growth simulations[J]. Materials Science and Technology, 2014, 30(1): 32-37. doi: 10.1179/1743284713Y.0000000302