高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种通过边界注量率耦合的MOC和SN二维耦合中子输运方法

张思凡 袁媛 刘宙宇 周欣宇 曹良志

张思凡, 袁媛, 刘宙宇, 周欣宇, 曹良志. 一种通过边界注量率耦合的MOC和SN二维耦合中子输运方法[J]. 核动力工程, 2022, 43(2): 9-16. doi: 10.13832/j.jnpe.2022.02.0009
引用本文: 张思凡, 袁媛, 刘宙宇, 周欣宇, 曹良志. 一种通过边界注量率耦合的MOC和SN二维耦合中子输运方法[J]. 核动力工程, 2022, 43(2): 9-16. doi: 10.13832/j.jnpe.2022.02.0009
Zhang Sifan, Yuan Yuan, Liu Zhouyu, Zhou Xinyu, Cao Liangzhi. A Two-dimensional Coupled Neutron Transport Method for MOC and SN via Boundary Fluence Rate Coupling[J]. Nuclear Power Engineering, 2022, 43(2): 9-16. doi: 10.13832/j.jnpe.2022.02.0009
Citation: Zhang Sifan, Yuan Yuan, Liu Zhouyu, Zhou Xinyu, Cao Liangzhi. A Two-dimensional Coupled Neutron Transport Method for MOC and SN via Boundary Fluence Rate Coupling[J]. Nuclear Power Engineering, 2022, 43(2): 9-16. doi: 10.13832/j.jnpe.2022.02.0009

一种通过边界注量率耦合的MOC和SN二维耦合中子输运方法

doi: 10.13832/j.jnpe.2022.02.0009
基金项目: 国家重点研发计划(2017YFE0302200);国家自然科学基金(11735011)
详细信息
    作者简介:

    张思凡(1997—),男,硕士研究生,现主要从事反应堆物理研究工作,E-mail: 872652654@qq.com

    通讯作者:

    刘宙宇,E-mail: zhouyuliu@mail.xjtu.edu.cn

  • 中图分类号: TL323

A Two-dimensional Coupled Neutron Transport Method for MOC and SN via Boundary Fluence Rate Coupling

  • 摘要: 当使用特征线方法(MOC)计算堆外探测器或某些特殊的重水慢化轻水冷却的实验堆时,因其活性区外部结构材料或慢化剂区域过大,密集的特征线会导致计算资源大量浪费。为解决这一问题,提出了一种新的基于MOC和离散纵标(SN)节块法的耦合输运方法,并在数值反应堆物理计算程序NECP-X中实现。该方法将计算区域划分为MOC域(包括活性区等复杂结构区域)和SN域(包括慢化剂和反射层等简单结构区域),然后对2个区域的网格进行混合扫描,通过区域交界面的角注量率进行耦合;同时提出了一些可行的方法来减缓耦合边界角注量率带来的误差。最后通过二维C5G7基准题和全堆芯问题的测试来验证耦合方法的计算效果,数值结果表明该方法具有良好的计算效率和精度。

     

  • 图  1  混合扫描流程

    Figure  1.  Flowchart of Hybrid Sweeping

    图  2  耦合方法的二维C5G7基准题建模

    Figure  2.  2D C5G7 Benchmark Task Modeling in Coupling Method     

    图  3  二维C5G7问题的4种建模方案

    Figure  3.  Four Modeling Schemes of 2D C5G7 Task

    图  4  4种方案MOC域右侧边界出射注量率形状

    Figure  4.  The Outgoing Fluence Rate Shape of the Right Boundary of the MOC Domain of the Four Schemes

    图  5  4种方案活性区右边界角注量率形状

    Figure  5.  The Fluence Rate Shape of the Right Boundary Angle of the Active Region of the Four Schemes

    图  6  D2O堆芯功率及其偏差

    白色背景数字表示归一化的绝对功率;有颜色背景数字表示功率偏差,单位为%

    Figure  6.  D2O Core Power and Its Deviation

    表  1  二维C5G7问题的4种建模方案详细信息

    Table  1.   Details of Four Modeling Schemes for 2D C5G7 Task      

    方案计算域x方向尺寸/cmy方向尺寸/cm
    0MOC42.8442.84
    1MOC42.84+1.2642.84+1.26
    2MOC42.84+1.26×242.84+1.26×2
    3MOC42.84+1.26×342.84+1.26×3
    下载: 导出CSV

    表  2  二维C5G7四种建模方案特征值和功率计算结果

    Table  2.   Eigenvalue and Power Calculation Results of Four Modeling Schemes for 2D G5C7

    方案keffkeff偏差/ pcm组件功率
    最大偏差/%
    棒功率
    最大偏差/%
    参考值1.18679
    方案01.18676−30.0711.23
    方案11.18670−90.024.68
    方案21.18671−80.011.54
    方案31.18672−70.010.76
      “—”表示无此项,下同
    下载: 导出CSV

    表  3  二维C5G7四种建模方案计算时间

    Table  3.   Computation Time of Four Modeling Schemes for 2D G5C7

    方法输运时间/sMOC 时间/s
    (占比/%)
    SN时间/s
    (占比/%)
    迭代次数
    传统MOC2880.662880.66631
    方案01139.511052.28 (92.34)87.23 (7.66)631
    方案11296.771198.88 (92.45)97.89 (7.55)631
    方案21361.481263.66 (92.82)97.82 (7.18)631
    方案31431.941335.59 (93.27)96.35 (6.73)631
    下载: 导出CSV

    表  4  重水慢化堆芯特征值和功率计算结果

    Table  4.   Eigenvalue and Power Calculation Results of Heavy Water Moderated Reactor Core

    计算结果参考解耦合方法(偏差)
    keff1.276471.27602 (−45 pcm)
    组件功率最大偏差/%−0.05
    棒功率最大偏差/%1.15
    下载: 导出CSV

    表  5  重水慢化堆芯计算时间

    Table  5.   Computation Time for Heavy Water Moderated Reactor Core

    方法扫描
    时间/h
    MOC时间
    /h

    (占比/%)
    SN时间
    /h

    (占比/%)
    迭代
    次数
    平均扫描
    时间/s
    传统MOC83.7183.712921103.18
    耦合方法10.707.35
    (68.69)
    3.35
    (31.31)
    366810.5
    下载: 导出CSV
  • [1] LIU Z Y, WU H C, CAO L Z, et al. A new three-dimensional method of characteristics for the neutron transport calculation[J]. Annals of Nuclear Energy, 2011, 38(2-3): 447-454. doi: 10.1016/j.anucene.2010.09.021
    [2] 刘宙宇. 中子输运方程的三维模块化特征线计算方法研究[D]. 西安: 西安交通大学, 2014.
    [3] COLLINS B, STIMPSON S, KELLEY B W, et al. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT[J]. Journal of Computational Physics, 2016, 326: 612-628. doi: 10.1016/j.jcp.2016.08.022
    [4] LEE G S, CHO N Z. 2D/1D fusion method solutions of the three-dimensional transport OECD benchmark problem C5G7 MOX[J]. Progress in Nuclear Energy, 2006, 48(5): 410-423. doi: 10.1016/j.pnucene.2006.01.010
    [5] LEE G S. Development of 2D/1D fusion method for three-dimensional whole-core heterogeneous neutron transport calculations[D]. Seoul: Korea Advanced Institute of Science & Technology, 2006.
    [6] CHO J Y, KIM K S, LEE C C, et al. Axial SPN and radial MOC coupled whole core transport calculation[J]. Journal of Nuclear Science and Technology, 2007, 44(9): 1156-1171. doi: 10.1080/18811248.2007.9711359
    [7] CHO N Z, LEE G S, PARK C J. Fusion of method of characteristics and nodal method for 3-D whole-core transport calculation[J]. Transactions of the American Nuclear Society, 2002, 86: 322-324.
    [8] JOO H G, CHO J Y, KIM K S, et al. Methods and performance of a three-dimensional whole-core transport code DeCART[C]//Proceeding of PHYSOR 2004-The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments. Chicago, Illinois: American Nuclear Society, 2004.
    [9] JUNG Y S, SHIM C B, LIM C H, et al. Practical numerical reactor employing direct whole core neutron transport and subchannel thermal/hydraulic solvers[J]. Annals of Nuclear Energy, 2013, 62: 357-374. doi: 10.1016/j.anucene.2013.06.031
    [10] CHEN J, LIU Z Y, ZHAO C, et al. A new high-fidelity neutronics code NECP-X[J]. Annals of Nuclear Energy, 2018, 116: 417-428. doi: 10.1016/j.anucene.2018.02.049
    [11] LIU Z Y, LIANG L, CHEN J, et al. Accuracy and analysis of the iteratively coupling 2D/3D method for the three-dimensional transport calculations[J]. Annals of Nuclear Energy, 2018, 113: 130-138. doi: 10.1016/j.anucene.2017.10.020
    [12] LIU S C, WANG G B, WU G C, et al. Neutronics comparative analysis of plate-type research reactor using deterministic and stochastic methods[J]. Annals of Nuclear Energy, 2015, 79: 133-142. doi: 10.1016/j.anucene.2015.01.027
    [13] WALTERS W F, O'DELL R D. Nodal methods for discrete-ordinates transport problems in (X, Y) geometry[C]//Proceeding of the ANS/ENS Joint Topical Meeting, Mathematical Methods in Nuclear Engineering, Munich, FRG, 1981.
    [14] WALTERS W F. Use of the Chebyshev-Legendre quadrature set in discrete-ordinate codes: LAUR-87-3621[R]. Los Alamos, USA: Los Alamos Scientific Laboratory, 1987.
    [15] YAMAMOTO A, TABUCHI M, SUGIMURA N, et al. Derivation of optimum polar angle quadrature set for the method of characteristics based on approximation error for the bickley function[J]. Journal of Nuclear Science & Technology, 2007, 44(2): 129-136.
    [16] SANCHEZ R, MAO L, SANTANDREA S. Treatment of boundary conditions in trajectory based deterministic transport methods[J]. Nuclear Science and Engineering, 2002, 140(1): 23-50. doi: 10.13182/NSE140-23
    [17] LU H L, WU H C. A nodal SN transport method for three-dimensional triangular-z geometry[J]. Nuclear Engineering and Design, 2007, 237(8): 830-839. doi: 10.1016/j.nucengdes.2006.10.025
    [18] BADRUZZAMAN A. An efficient algorithm for nodal-transport solutions in multidimensional geometry[J]. Nuclear Science and Engineering, 1985, 89(3): 281-290. doi: 10.13182/NSE85-A17550
    [19] SMITH M A, LEWIS E E, NA B C. Benchmark on deterministic transport calculations without spatial homogenization: a 2-D/3-D MOX fuel assembly benchmark: ISBN 92-64-02139-6[R]. Paris: OECD/NEA, 2003
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  478
  • HTML全文浏览量:  84
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-11
  • 修回日期:  2021-07-29
  • 刊出日期:  2022-04-02

目录

    /

    返回文章
    返回