高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

棒束通道单相和两相交混模型评估

叶停朴 吕路路 张戈 何辉 程诚

叶停朴, 吕路路, 张戈, 何辉, 程诚. 棒束通道单相和两相交混模型评估[J]. 核动力工程, 2022, 43(2): 47-52. doi: 10.13832/j.jnpe.2022.02.0047
引用本文: 叶停朴, 吕路路, 张戈, 何辉, 程诚. 棒束通道单相和两相交混模型评估[J]. 核动力工程, 2022, 43(2): 47-52. doi: 10.13832/j.jnpe.2022.02.0047
Ye Tingpu, Lyu Lulu, Zhang Ge, He Hui, Cheng Cheng. Evaluation of Single-phase and Two-phase Mixing Models for Rod Bundle Channel[J]. Nuclear Power Engineering, 2022, 43(2): 47-52. doi: 10.13832/j.jnpe.2022.02.0047
Citation: Ye Tingpu, Lyu Lulu, Zhang Ge, He Hui, Cheng Cheng. Evaluation of Single-phase and Two-phase Mixing Models for Rod Bundle Channel[J]. Nuclear Power Engineering, 2022, 43(2): 47-52. doi: 10.13832/j.jnpe.2022.02.0047

棒束通道单相和两相交混模型评估

doi: 10.13832/j.jnpe.2022.02.0047
基金项目: 国家科技重大专项-大型先进压水堆及高温气冷堆核电站(2017ZX06002004)
详细信息
    作者简介:

    叶停朴(1992—),男,工程师,现主要从事燃料组件性能实验方面的研究,E-mail: tingpuye@foxmail.com

    通讯作者:

    张 戈,E-mail: scobin_chang@163.com

  • 中图分类号: TL334

Evaluation of Single-phase and Two-phase Mixing Models for Rod Bundle Channel

  • 摘要: 本研究利用子通道程序,基于已有的实验数据,对棒束通道的单相和两相交混模型进行了评估。单相交混主要考虑横流和湍流交混,横流由守恒方程决定并在流量分布中占主导作用,湍流交混取决于交混系数,对湍流交混研究发现Sadatomi模型预测结果与实验结果吻合较好。两相交混由横流、湍流交混和空泡漂移共同作用,通过已有模型预测结果与实验数据对比分析,推荐两相交混中空泡漂移采用Hotta模型、湍流交混系数采用Sadatomi模型和两相乘子采用Beus模型,这是一个预测结果较为保守的组合模型,有利于反应堆安全的保守性评估。

     

  • 图  1  交混系数两相乘子与空泡份额的关系

    Figure  1.  Relationship between the Two-phase Multiplier of the Mixing Coefficient and the Void Fraction

    图  2  THERMIT-3和COBRA-TF程序计算结果的对比

    μ —液相动力粘度,Pa·s

    Figure  2.  Comparison of THERMIT-3 and COBRA-TF Calculation Results

    图  3  单相交混模型预测结果与实验结果比较

    Figure  3.  Comparison between Prediction Results of Single-phase Mixing Model and Experimental Results

    图  4  两相交混模型预测结果与van der Ros和Tapucu实验结果比较       

    Figure  4.  Comparison of Two-phase Mixing Models and Experimental Data of van der Ros and Tapucu

    表  1  单相棒束几何结构及实验参数

    Table  1.   Single-phase Rod Bundle Geometry and Experimental Parameters

    棒束类型Sadatomi 2×3棒束GE 3×3棒束
    几何结构
    棒直径/mm16.014.5
    棒间距/mm20.018.7
    长度/mm2250.01828.8
    液相表观速度(jf)/(m·s−1)0.7~2.00.69~2.82
    下载: 导出CSV

    表  2  两相实验几何结构和工况参数

    Table  2.   Geometry and Case Parameters of Two-phase Experiments

    实验名称van der RosTapucu
    几何结构(单位:mm)(单位:mm)
    工况名称通道1通道2通道1通道2
    uf=1.571 m/suf=1.782 m/s, ug =1.803 m/s, α=0.262Gf=3003.0 kg/(m2·s)Gf=2997.0 kg/(m2·s)
    Gg =5.1 kg/(m2·s)
      uf—液相速度;ug—气相速度;α—空泡份额;Gf—液相质量流量;Gg—气相质量流量
    下载: 导出CSV

    表  3  两相交混组合模型

    Table  3.   Two-phase Mixing Combined Model

    组合模型交混系数两相乘子空泡漂移
    模型1Rogers & Rosehart模型Beus模型Hotta模型
    模型2Rogers & Rosehart模型Kumamoto模型Hotta模型
    模型3Sadatomi模型Beus模型Hotta模型
    模型4Sadatomi模型Kumamoto模型Hotta模型
    下载: 导出CSV
  • [1] LAHEY R T JR, MOODY F J. The thermal-hydraulics of a boiling water nuclear reactor[M]. 2nd ed. La Grange Park: American Nuclear Society, 1993: 168-184.
    [2] PANG B, CHENG X. Proposal of a new type of two-phase interchannel mixing model for application to subchannel analysis of PWR conditions[J]. Annals of Nuclear Energy, 2014, 73: 108-121. doi: 10.1016/j.anucene.2014.06.033
    [3] KELLY J E, KAO S P, KAZIMI M S. THERMIT-2: a two-fluid model for light water reactor sub-channel transient analysis: MIT-EL-81-014[R]. USA,Cambridge: MIT, 1981.
    [4] ROGERS J T, ROSEHART R G. Mixing by turbulent interchange in fuel bundles, correlations and inferences: ASME 72-HT-53[R]. USA: ASME, 1972
    [5] SADATOMI M, KAWAHARA A, SATO Y. Prediction of the single-phase turbulent mixing rate between two parallel subchannels using a subchannel geometry factor[J]. Nuclear Engineering and Design, 1996, 162(2-3): 245-256. doi: 10.1016/0029-5493(95)01129-3
    [6] BUES S G. Two phase turbulent mixing model for flow in rod bundle: WAPD-T-2438[R]. Pittsburgh: Bettis Atomic Power Laboratory, 1972.
    [7] AVRAMOVA M. Development of an innovative spacer grid model utilizing computational fluid dynamics within a subchannel analysis tool[D]. University Park: The Pennsylvania State University, 2007.
    [8] LEVY S. Prediction of two-phase pressure drop and density distribution from mixing length theory[J]. Journal of Heat Transfer, 1963, 85(2): 137-150. doi: 10.1115/1.3686033
    [9] SADATOMI S, KAWAHARA A, SATO Y. Flow redistribution due to void drift in two-phase flow in a multiple channel consisting of two subchannels[J]. Nuclear Engineering and Design, 1994, 148(2-3): 463-474. doi: 10.1016/0029-5493(94)90126-0
    [10] HOTTA A, SHIRAI H, AZUMA M, et al. A modified equilibrium void distribution model applicable to subchannel-scale vapor-liquid cross flow model for conventional square and tight lattice BWR fuel bundles[J]. Nuclear Engineering and Design, 2005, 235(9): 983-999. doi: 10.1016/j.nucengdes.2004.10.012
    [11] SADATOMI M, KAWAHARA A, KANO K, et al. Single- and two-phase turbulent mixing rate between adjacent subchannels in a vertical 2 × 3 rod array channel[J]. International Journal of Multiphase Flow, 2004, 30(5): 481-498. doi: 10.1016/j.ijmultiphaseflow.2004.03.001
    [12] LAHEY R T JR, SHIRALKAR B S, RADCLIFFE D W, et al. Out-of-pile subchannel measurements in a nine-rod bundle for water at 1000 PSIA[J]//HETSRONI G, SIDEMAN S, HARTNETTJ P. Proceedings of the international symposium on two-phase systems: Progress in Heat and Mass Transfer. Amsterdam: Elsevier, 1972: 345-363.
    [13] VAN DER ROSS T. On two-phase exchange between interacting hydraulic channels[D]. Eindhoven: Eindhoven University of Technology, 1970.
    [14] TAPUCU A, TEYSSEDOU A, TYE P, et al. The effect of turbulent mixing models on the predictions of subchannel codes[J]. Nuclear Engineering and Design, 1994, 149(1-3): 221-231. doi: 10.1016/0029-5493(94)90288-7
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  351
  • HTML全文浏览量:  90
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-09
  • 录用日期:  2021-02-09
  • 修回日期:  2021-05-29
  • 刊出日期:  2022-04-02

目录

    /

    返回文章
    返回