高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CFD方法的高温热管特性研究

余清远 赵鹏程 马誉高

余清远, 赵鹏程, 马誉高. 基于CFD方法的高温热管特性研究[J]. 核动力工程, 2022, 43(2): 70-76. doi: 10.13832/j.jnpe.2022.02.0070
引用本文: 余清远, 赵鹏程, 马誉高. 基于CFD方法的高温热管特性研究[J]. 核动力工程, 2022, 43(2): 70-76. doi: 10.13832/j.jnpe.2022.02.0070
Yu Qingyuan, Zhao Pengcheng, Ma Yugao. CFD Analysis on Characteristics of High Temperature Heat Pipe[J]. Nuclear Power Engineering, 2022, 43(2): 70-76. doi: 10.13832/j.jnpe.2022.02.0070
Citation: Yu Qingyuan, Zhao Pengcheng, Ma Yugao. CFD Analysis on Characteristics of High Temperature Heat Pipe[J]. Nuclear Power Engineering, 2022, 43(2): 70-76. doi: 10.13832/j.jnpe.2022.02.0070

基于CFD方法的高温热管特性研究

doi: 10.13832/j.jnpe.2022.02.0070
详细信息
    作者简介:

    余清远(2000—),男,在读本科生,现主要从事核反应堆热工水力方面的研究,E-mail: 1838882338@qq.com

  • 中图分类号: TL339

CFD Analysis on Characteristics of High Temperature Heat Pipe

  • 摘要: 高温热管运行特性的分析与预测,对热管设计和应用具有重要意义。为分析高温热管内两相流动传热特性,首先建立钠热管的计算流体力学(CFD)分析模型,并对模型计算值与钠热管稳态实验数据进行对比校核,模拟结果与实验测点温度的绝对误差小于40℃,相对误差在5%以内;其次,利用本文模型与方法对不同传热功率和倾角下的热管内部流场特性进行分析研究。研究表明,均匀加热条件下,蒸气腔内的速度在蒸发段接近线性变化,而在冷凝段,气体流速减小致使压强回升,同时,蒸气的流动压降和速度随加热功率增加呈下降趋势;在热管水平和倾角运行工况,热管内两相流动压降中液相压降均占主导;而气液间剪切效应中,气体流动速度为主导效应。本文模型可为热管堆等高温热管应用领域提供热管设计与分析方法。

     

  • 图  1  高温热管工作原理示意图

    Figure  1.  Schematic Diagram of High Temperature Heat Pipe Working Principle

    图  2  实验台架示意图

    Figure  2.  Schematic Diagram of Experiment Bench

    图  3  热管壁面温度测点位置分布

    Figure  3.  Temperature Measuring-Point Distribution of Heat Pipe Wall Surface

    图  4  热管几何建模与网格

    Figure  4.  Heat Pipe Geometric Modeling and Meshes

    图  5  热管温度场分布(800 W加热功率、0°倾角)

    Figure  5.  Heat Pipe Temperature Filed Distribution (800 W Heating Power, 0° Inclination)

    图  6  气相与液相工质的速度与压强分布(800 W加热功率、0°倾角)

    Figure  6.  Velocity and Pressure Distribution of Gas and Liquid Working Mediums (800 W Heating Power, 0° Inclination)

    图  7  热管壁面温度模拟结果与实验结果对比(1200 W加热功率、0°倾角)

    Figure  7.  Comparison between Simulation Results and Experimental Results of Heat Pipe Wall Temperature (1200 W Heating Power, 0° Inclination)

    图  8  气相与液相工质的速度与压强分布(1200 W加热功率、0°倾角)

    Figure  8.  Velocity and Pressure Distribution of Gas and Liquid Working Mediums (1200 W Heating Power, 0° Inclination)

    图  9  –15°倾角下液相的速度和压强分布

    Figure  9.  Liquid Velocity and Pressure Distribution at −15° Inclination

    表  1  热管模型的边界条件设置

    Table  1.   Boundary Condition Setting of Heat Pipe Model

    边界边界条件
    蒸发段${k_{\rm{w}}}\left( {\partial T/\partial n} \right) = q$
    冷凝端${ { - } }{k_{\rm{w}}}\left( {\partial T/\partial n} \right) = {h_\infty }(T - {T_\infty }) + \varepsilon \sigma \left( { {T^4} - T_\infty ^4} \right)$
    绝热面${k_{\rm{w}}}\left( {\partial T/\partial n} \right) = 0$
    固体壁面与保温层、
    吸液芯接触面
    ${k_{\rm{w} } }\left( {\partial T/\partial n} \right) = {k_{\rm{{eff}}} }\left( {\partial {T_{{\rm{wick}}} }/\partial n} \right)$
      kw—为壁面热导率;q—热流通量;h—冷凝段对流换热系数;T—冷凝段边界换热温度;Twick—吸液芯温度;σ—发射率;n—界面法向方向
    下载: 导出CSV

    表  2  钠热管参数

    Table  2.   Sodium Heat Pipe Parameters

    参数名参数值参数名参数值
    热管尺寸/mmΦ20×1000工质
    管壁厚度/mm2工质充液率/%20
    蒸发段长度/mm400管壁材料316不锈钢
    绝热段长度/mm200吸液芯类型不锈钢丝网
    冷凝段长度/mm400吸液芯结构100目和400目复合丝网
    工作温度/℃550~900吸液芯厚度/mm0.3
    下载: 导出CSV
  • [1] FAGHRI A. Review and advances in heat pipe science and technology[J]. Journal of Heat Transfer, 2012, 134(12): 123001. doi: 10.1115/1.4007407
    [2] 余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8.
    [3] WANG C L, TANG S M, LIU X, et al. Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery[J]. Applied Thermal Engineering, 2020, 175: 115299. doi: 10.1016/j.applthermaleng.2020.115299
    [4] CHAUDHRY H N, HUGHES B R, GHANI S A. A review of heat pipe systems for heat recovery and renewable energy applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2249-2259. doi: 10.1016/j.rser.2012.01.038
    [5] 马誉高,杨小燕,刘余,等. MW级热管冷却反应堆反馈特性及启堆过程研究[J]. 原子能科学技术,2021, 55(S2): 213-220.
    [6] 马誉高,刘旻昀,余红星,等. 热管冷却反应堆核热力耦合研究[J]. 核动力工程,2020, 41(4): 191-196.
    [7] 冯踏青. 液态金属高温热管的理论和试验研究[D]. 杭州: 浙江大学, 1998: 11.
    [8] 李桂云,屠进. 高温热管工质的选择[J]. 节能技术,2001, 19(1): 42-44. doi: 10.3969/j.issn.1002-6339.2001.01.018
    [9] 田智星,刘逍,王成龙,等. 高温钾热管稳态运行传热特性研究[J]. 原子能科学技术,2020, 54(10): 1771-1778.
    [10] MA Y G, YU H X, HUANG S F, et al. Effect of inclination angle on the startup of a frozen sodium heat pipe[J]. Applied Thermal Engineering, 2022, 201: 117625. doi: 10.1016/j.applthermaleng.2021.117625
    [11] CAO Y, FAGHRI A. A numerical analysis of high-temperature heat pipe startup from the frozen state[J]. Journal of Heat Transfer, 1993, 115(1): 247-254. doi: 10.1115/1.2910657
    [12] FERRANDI C, IORIZZO F, MAMELI M, et al. Lumped parameter model of sintered heat pipe: transient numerical analysis and validation[J]. Applied Thermal Engineering, 2013, 50(1): 1280-1290. doi: 10.1016/j.applthermaleng.2012.07.022
    [13] TIAN Z X, WANG C L, HUANG J L, et al. Code development and analysis on the operation of liquid metal high temperature heat pipes under full condition[J]. Annals of Nuclear Energy, 2021, 160: 108396. doi: 10.1016/j.anucene.2021.108396
    [14] ZUO Z J, FAGHRI A. A network thermodynamic analysis of the heat pipe[J]. International Journal of Heat and Mass Transfer, 1998, 41(11): 1473-1484. doi: 10.1016/S0017-9310(97)00220-2
    [15] BEAM J E. Transient heat pipe analysis[C]//Proceedings of the 20th Thermophysics Conference. Williamsburg: AIAA, 1985.
    [16] 焦永刚,夏国栋,周明正,等. 基于“平面前锋”启动模型的计量用钠热管启动特性[J]. 化工学报,2012, 63(3): 781-787. doi: 10.3969/j.issn.0438-1157.2012.03.015
    [17] ALIZADEHDAKHEL A, RAHIMI M, ALSAIRAFI A A. CFD modeling of flow and heat transfer in a thermosyphon[J]. International Communications in Heat and Mass Transfer, 2010, 37(3): 312-318. doi: 10.1016/j.icheatmasstransfer.2009.09.002
    [18] ASMAIE L, HAGHSHENASFARD M, MEHRABANI-ZEINABAD A, et al. Thermal performance analysis of nanofluids in a thermosyphon heat pipe using CFD modeling[J]. Heat and Mass Transfer, 2013, 49(5): 667-678. doi: 10.1007/s00231-013-1110-6
    [19] SOLOMON A B, RAMACHANDRAN K, ASIRVATHAM L G, et al. Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid[J]. International Journal of Heat and Mass Transfer, 2014, 75: 523-533. doi: 10.1016/j.ijheatmasstransfer.2014.04.007
    [20] FADHL B, WROBEL L C, JOUHARA H. CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a[J]. Applied Thermal Engineering, 2015, 78: 482-490. doi: 10.1016/j.applthermaleng.2014.12.062
    [21] 刘鹤青. 金属丝编织密纹网的孔隙率[J]. 过滤与分离,2007, 17(4): 26-27,33. doi: 10.3969/j.issn.1005-8265.2007.04.008
    [22] SUN H, TANG S M, WANG C L, et al. Numerical simulation of a small high-temperature heat pipe cooled reactor with CFD methodology[J]. Nuclear Engineering and Design, 2020, 370: 110907. doi: 10.1016/j.nucengdes.2020.110907
    [23] RANJAN R, MURTHY J Y, GARIMELLA S V, et al. A numerical model for transport in flat heat pipes considering wick microstructure effects[J]. International Journal of Heat and Mass Transfer, 2011, 54(1-3): 153-168. doi: 10.1016/j.ijheatmasstransfer.2010.09.057
    [24] 庄骏, 张红. 热管技术及其工程应用[M]. 北京: 化学工业出版社, 2000: 65.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  840
  • HTML全文浏览量:  257
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-10
  • 录用日期:  2022-01-10
  • 修回日期:  2021-12-29
  • 刊出日期:  2022-04-02

目录

    /

    返回文章
    返回