高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MPMS计算模型的PUREX 1B流程模拟研究

汤嘉 杨雨 林铭章 鲁芸芸 熊伟 郭子方 吴志豪

汤嘉, 杨雨, 林铭章, 鲁芸芸, 熊伟, 郭子方, 吴志豪. 基于MPMS计算模型的PUREX 1B流程模拟研究[J]. 核动力工程, 2022, 43(2): 102-107. doi: 10.13832/j.jnpe.2022.02.0102
引用本文: 汤嘉, 杨雨, 林铭章, 鲁芸芸, 熊伟, 郭子方, 吴志豪. 基于MPMS计算模型的PUREX 1B流程模拟研究[J]. 核动力工程, 2022, 43(2): 102-107. doi: 10.13832/j.jnpe.2022.02.0102
Tang Jia, Yang Yu, Lin Mingzhang, Lu Yunyun, Xiong Wei, Guo Zifang, Wu Zhihao. Study on PUREX 1B Process Simulation Based on MPMS Calculation Model[J]. Nuclear Power Engineering, 2022, 43(2): 102-107. doi: 10.13832/j.jnpe.2022.02.0102
Citation: Tang Jia, Yang Yu, Lin Mingzhang, Lu Yunyun, Xiong Wei, Guo Zifang, Wu Zhihao. Study on PUREX 1B Process Simulation Based on MPMS Calculation Model[J]. Nuclear Power Engineering, 2022, 43(2): 102-107. doi: 10.13832/j.jnpe.2022.02.0102

基于MPMS计算模型的PUREX 1B流程模拟研究

doi: 10.13832/j.jnpe.2022.02.0102
详细信息
    作者简介:

    汤 嘉(1995—),男,硕士研究生,现主要从事反应堆水化学研究,E-mail: jiatang@mail.ustc.edu.cn

    通讯作者:

    林铭章,E-mail: gelin@ustc.edu.cn

  • 中图分类号: TL941.19

Study on PUREX 1B Process Simulation Based on MPMS Calculation Model

  • 摘要: 为模拟铀钚氧化还原萃取(PUREX)的U/Pu分离流程(简称1B流程),以多级混合澄清槽为萃取设备,以化学反应体系和经验萃取体系为基础,基于MPMS计算模型框架建立了以NH3OH+-N2H4(HAN-HYD)作为还原萃取剂的1B流程数学模型。通过对比文献数据,验证了模型的有效性。应用该数学模型探究了某低流速高酸洗涤液在特定参数条件下的1B流程中发挥的效应,结果表明该低流速高酸洗涤液的引入会降低U/Pu回收率。为进一步评估不同条件下低流速高酸洗涤液对1B流程分离效率和回收效率的影响,通过改变模型中低流速高酸洗涤液的工艺参数获得不同的U/Pu分离效果。计算结果表明,在不引入低流速高酸洗涤液的条件下,1B流程能获得最优的U/Pu分离效率。该数学模型将为基于多级混合澄清槽的1B流程工艺评估和预测等提供有益帮助。

     

  • 图  1  水相硝酸对硝酸羟胺还原反萃Pu的影响

    Figure  1.  Effect of Aqueous Nitric Acid on Reduction and Stripping of Pu by Hydroxylamine Nitrate

    图  2  基于18级混合澄清槽的二次洗涤1B流程

    Figure  2.  1B Process of Secondary Cleaning Based on 18-stage Mixer-Settler

    图  3  模拟1B流程中ρPu计算数据与实验数据对比

    Figure  3.  Comparison of ρPu Calculation Data and Experimental Data in the Simulated 1B Process

    图  4  基于18级混合澄清槽的一次洗涤1B流程

    Figure  4.  1B Process of Primary Cleaning Based on 18-stage Mixer-Settler

    图  5  2种1B流程各级混合澄清槽中的ρUρPu比较

    Figure  5.  Comparison of ρU and ρPu in Mixer-Settler of Two 1B Processes

    表  1  1B流程关键物质的经验萃取公式集

    Table  1.   Empirical Extraction Set of Key Substances in 1B Process     

    序号经验萃取式
    R1${K}_{ {\mathrm{H} }_{1} }=\left(0.1416{C}_{\rm{aq} , {\mathrm{N}\mathrm{O} }_{3}^{-} }^{0.6724}+0.006058{C}_{\rm{aq} ,{\mathrm{N}\mathrm{O} }_{3}^{-} }^{3.418}\right)(1-0.54{\mathrm{e} }^{-15F})$
    R2$ {K}_{{\mathrm{H}}_{2}}={K}_{{\mathrm{H}}_{1}} $
    R3$\begin{array}{l}{K}_{\mathrm{U}\left(\mathrm{V}\mathrm{I}\right)}=\left(5.284{C}_{\rm{aq} ,{\mathrm{N}\mathrm{O} }_{3}^{-} }^{1.582}+1.557{C}_{\rm{aq} , {\mathrm{N}\mathrm{O} }_{3}^{-} }^{3.843}+0.01267{C}_{\rm{aq} , {\mathrm{N}\mathrm{O} }_{3}^{-} }^{7.447}\right)\\ \qquad\quad\;\;\;\left(4{F}^{-0.17}-3\right)\end{array}$
    R4${K}_{\mathrm{P}\mathrm{u}\left(\mathrm{I}\mathrm{I}\mathrm{I}\right)}=0.04{C}_{\rm{aq} , {\mathrm{N}\mathrm{O} }_{3}^{-} }^{1.8}+0.000156F{C}_{\rm{aq} ,{\mathrm{N}\mathrm{O} }_{3}^{-} }^{7}$
    R5${K}_{\mathrm{P}\mathrm{u}\left(\mathrm{I}\mathrm{V}\right)}={K}_{\mathrm{U}\left(\mathrm{V}\mathrm{I}\right)}\left(0.3429+0.009552{C}_{\rm{aq} , {\mathrm{N}\mathrm{O} }_{3}^{-} }^{2.154}\right)$
    R6${K}_{ {\mathrm{H}\mathrm{N}\mathrm{O} }_{2} }=24.8{C}_{\rm{aq} ,{\mathrm{H} }_{}^{+} }^{-0.28}-3.209{C}_{\rm{aq} ,{\mathrm{H} }_{}^{+} }^{-0.653}$
      Ki—物质i在有机相和水相的分配比;F—有机相中萃取剂TBP的体积比;下标H1、H2—HNO3与TBP结合的2种形态:HNO3TBP1、HNO3TBP2Caq,i—反萃后萃余相中物质i的摩尔浓度,mol/L
    下载: 导出CSV

    表  2  不同流速高酸洗涤液工艺条件下,1B流程萃取相和萃余相中U、Pu质量浓度

    Table  2.   Mass Concentrations of U and Pu in the Extraction Phase and Residual Phase of 1B Process under the Process Conditions of High Acid Cleaning Solution at Different Flow Rates       

    流速/(mol·min−1)${ {\;\rho }_{\mathrm{U} } }_{\mathrm{o}\mathrm{r}\mathrm{g} }$/(g·L−1)${\;\rho }_{\mathrm{P}{\mathrm{u} }_{\mathrm{o}\mathrm{r}\mathrm{g} } }$/(10−7g·L−1)${\;\rho }_{ {\mathrm{U} }_{\mathrm{a}\mathrm{q} } }$/(10−7g·L−1)${\;\rho }_{\mathrm{P}{\mathrm{u} }_{\mathrm{a}\mathrm{q} } }$/(10−2g·L−1)$\varphi$/1010${\;\mu }_{\mathrm{U} }$${\;\mu }_{\mathrm{P}\mathrm{u} }$$\;\mu$
    00.26759.2126.3477.7343.53780.99730.98220.9795
    0.10.267513.844.3017.6293.42950.99740.98060.9780
    0.20.267513.633.0667.5264.81780.99740.97900.9765
    0.30.267514.302.2797.4416.10920.99740.97950.9770
    0.40.26756.6651.7597.3381.67430.99750.97720.9748
    0.50.26756.1841.3997.2512.24190.99750.97700.9746
    下载: 导出CSV
  • [1] World Nuclear Association. World nuclear power reactors & uranium requirements[EB/OL]. (2020-11-09) [2021-01-14]. https://www.world-nuclear.org/information-library/facts-and-figures/world-nuclear-power-reactors-and-uranium-requireme.aspx.
    [2] RICHARDSON G L. Effect of high solvent radiation exposures on TBP processing of spent LMFBR fuels: HEDL-TME 73-51[R]. Richland, Wash: Hanford Engineering Development Laboratory, 1973.
    [3] WATSON S B , RAINEY R H. Modifications of the SEPHIS computer code for calculating the PUREX solvent extraction system: ORNL-TM-5123[R]. America: Oak Ridge National Laboratory, 1975.
    [4] WATSON S B, RAINEY R H. User’s guide to the SEPHIS computer code for calculating the THOREX solvent extraction system: ORNL-CSD-TM-70[R]. America: Oak Ridge National Laboratory, 1979.
    [5] MITCHELL A D. Use of the SEPHIS-MOD4 program for modeling the PUREX and THOREX solvent extraction processes[J]. Separation Science and Technology, 1981, 16(10): 1299-1319. doi: 10.1080/01496398108058303
    [6] GELDARD J F, BEYERLEIN A L. CUSEP—a new mathematical model of pulsed column contactors using the PUREX process[J]. Nuclear Technology, 1989, 85(2): 172-186. doi: 10.13182/NT89-A34239
    [7] TACHIMORI S. Extra·M: A computing code system for analysis of the PUREX process with mixer settlers for reprocessing: JAERI 1331[R]. Japan: Japan Atomic Energy Research Institution, 1994.
    [8] NAITO M, SUTO T, ASAKAWA K, et al. Mixset-X: A computer code for simulating the PUREX solvent extraction process: JNC TN8400 99-005[R]. Japan: Japan Nuclear Cycle Development Institution, 1999.
    [9] GONDA K, FUKUDA S. Calculation code MIXSET for PUREX process: PNCT 841-77-60[R]. Japan: Power Reactor and Nuclear Fuel Development Corporation, 1977.
    [10] GONDA K, OKA K, FUKUDA S. Calculation code revised MIXSET for PUREX process: PNCT 841-79-26[R]. Japan: Power Reactor and Nuclear Fuel Development Corporation, 1979
    [11] SOREL C, MONTUIR M, BALAGUER C, et al. The PAREX code: a powerful tool to model and simulate solvent extraction operations[C]. Santiago, Chile: Proceedings of the 19th International Solvent Extraction Conference ISEC11, 2011
    [12] BISSON J, DINH B, HURON P, et al. PAREX, a numerical code in the service of La Hague plant operations[J]. Procedia Chemistry, 2016, 21: 117-124. doi: 10.1016/j.proche.2016.10.017
    [13] 何辉,李高亮,陈辉,等. PUREX流程共去污工艺计算机稳态模拟[J]. 原子能科学技术,2008, 42(9): 784-789.
    [14] 于婷,何辉,洪哲,等. PUREX流程铀钚分离工艺单元数学模型研究[J]. 原子能科学技术,2019, 53(2): 193-199. doi: 10.7538/yzk.2018.youxian.0753
    [15] MARCHENKO V I, DVOEGLAZOV K N, VOLK V I. Use of redox reagents for stabilization of Pu and Np valence forms in aqueous reprocessing of spent nuclear fuel: Chemical and technological aspects[J]. Radiochemistry, 2009, 51(4): 329-344. doi: 10.1134/S1066362209040018
    [16] 汤嘉,郭子方,翁汉钦,等. 基于多级混合澄清槽的PUREX流程的计算模型[J]. 核化学与放射化学,2020, 42(3): 167-173.
    [17] 兰天,罗方祥,肖松涛,等. 硝酸羟胺还原反萃高浓度钚[J]. 核化学与放射化学,2016, 38(3): 154-158. doi: 10.7538/hhx.2016.38.03.0154
    [18] GONDA K, MIYACHI S, FUKUDA S. Mass transfer model of purex process in mixer-settlers[J]. Journal of Nuclear Science and Technology, 1986, 23(5): 472-474. doi: 10.1080/18811248.1986.9735008
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  349
  • HTML全文浏览量:  162
  • PDF下载量:  266
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-04
  • 修回日期:  2021-03-02
  • 刊出日期:  2022-04-02

目录

    /

    返回文章
    返回