高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核电厂安全壳近场地震动下易损性分析

荣华 金松 贡金鑫

荣华, 金松, 贡金鑫. 核电厂安全壳近场地震动下易损性分析[J]. 核动力工程, 2022, 43(2): 126-132. doi: 10.13832/j.jnpe.2022.02.0126
引用本文: 荣华, 金松, 贡金鑫. 核电厂安全壳近场地震动下易损性分析[J]. 核动力工程, 2022, 43(2): 126-132. doi: 10.13832/j.jnpe.2022.02.0126
Rong Hua, Jin Song, Gong Jinxin. Fragility Analysis of Nuclear Power Plant Containment under Near-site Vibration[J]. Nuclear Power Engineering, 2022, 43(2): 126-132. doi: 10.13832/j.jnpe.2022.02.0126
Citation: Rong Hua, Jin Song, Gong Jinxin. Fragility Analysis of Nuclear Power Plant Containment under Near-site Vibration[J]. Nuclear Power Engineering, 2022, 43(2): 126-132. doi: 10.13832/j.jnpe.2022.02.0126

核电厂安全壳近场地震动下易损性分析

doi: 10.13832/j.jnpe.2022.02.0126
基金项目: 国家工业建筑诊断与改造工程技术研究中心开放基金项目(YZA2017Ky02)
详细信息
    作者简介:

    荣 华(1985—),女,高级工程师,博士,现从事核电厂结构力学性能研究,E-mail: ronghuakeke@163.com

    通讯作者:

    金 松,E-mail: jinsong_342601@163.com

  • 中图分类号: TU378

Fragility Analysis of Nuclear Power Plant Containment under Near-site Vibration

  • 摘要: 安全壳结构作为核电厂最重要的结构之一,其地震易损性是核电厂结构概率地震安全评价工作中关注的重点。结合非线性有限元分析技术和增量动力分析方法,对核电厂安全壳在近场地震动作用下的易损性展开分析。此外,为克服传统基于顶点位移的安全壳结构整体损伤指标的局限性,本文提出了基于能量的整体损伤指标,并验证其有效性。最后提出了考虑地震易损性参数统计不确定性的易损性曲线构造方法。研究结果表明:本文提出的安全壳结构整体损伤指标能很好地反映安全壳结构整体变形特性,并且其变异性小于基于顶点位移整体损伤指标的变异性。统计不确定性对安全壳结构不同损伤性能水准下对应的易损性曲线的整体影响可以忽略,但对易损性曲线下尾部分有一定影响。

     

  • 图  1  安全壳几何简图

    Figure  1.  Containment Geometry Sketch

    图  2  安全壳结构网格划分

    Figure  2.  Containment Structure Meshing

    图  3  基于顶点位移的整体损伤指标和基于能量的整体损伤指标的变异系数随地震动强度的变化

    Figure  3.  Variation Coefficient of Global Damage Index Based on Top Displacement and Global Damage Index Based on Energy with Ground Motion Intensity

    图  4  安全壳结构不同损伤性能水准易损性曲线

    pf—地震动强度x下的无条件失效概率

    Figure  4.  Fragility Curves of Containment Structure Corresponding to Different Damage States

    图  5  考虑统计不确定性与不考虑统计不确定性安全壳结构地震易损性曲线比较

    Figure  5.  Comparison of Containment Structure Seismic Fragility Curves with and without Considering Statistical Uncertainty

    表  1  地震动记录信息

    Table  1.   Records of Ground Motions

    序号地震名称台站震级断层距/kmV30/(m·s−1)Tp/s
    1 San Fernando Pacoima Dam (upper left abut) 6.61 1.81 2016.13 1.638
    2 Tabas_Iran Tabas 7.35 2.05 766.77 6.188
    3 Coyote Lake Gilroy Array #6 5.74 3.11 663.31 1.232
    4 Irpinia_Italy−01 Bagnoli Irpinio 6.9 8.18 649.67 1.713
    5 Morgan Hill Coyote Lake Dam − Southwest Abutment 6.19 0.53 561.43 1.071
    6 Morgan Hill Gilroy Array #6 6.19 9.87 663.31 1.232
    7 Landers Lucerne 7.28 2.19 1369 5.124
    8 Northridge−01 LA Dam 6.69 5.92 628.99 1.617
    9 Northridge−01 Pacoima Dam (downstr) 6.69 7.01 2016.13 0.588
    10 Northridge−01 Pacoima Dam (upper left) 6.69 7.01 2016.13 0.84
    11 Kocaeli_Turkey Gebze 7.51 10.92 792 5.992
    12 Kocaeli_Turkey Izmit 7.51 7.21 811 5.369
    13 Chi-Chi_Taiwan TCU052 7.62 16.59 645.72 8.456
    14 Chi-Chi_Taiwan TCU064 7.62 0.66 579.1 11.956
    15 Chi-Chi_Taiwan TCU075 7.62 0.89 573.02 4.998
    16 Chi−Chi_Taiwan TCU076 7.62 2.74 614.98 4.732
    17 Chi-Chi_Taiwan TCU102 7.62 1.49 714.27 9.632
    18 Chi−Chi_Taiwan TCU128 7.62 13.13 599.64 9.023
    19 Loma Prieta Los Gatos − Lexington Dam 6.93 5.02 1070.34 1.568
    20 Cape Mendocino Bunker Hill FAA 7.01 12.24 566.42 5.362
      Tp—速度脉冲周期
    下载: 导出CSV

    表  2  安全壳结构整体损伤性能阈值

    Table  2.   Global Damage Performance Threshold of Containment Structure

    整体损伤指标损伤性能水准
    0.1~0.2轻微损伤
    0.2~0.5中度损伤
    0.5~0.8严重损伤
    下载: 导出CSV
  • [1] 金松,李忠诚,蓝天云,等. 严重事故下预应力混凝土安全壳非线性分析及性能评估[J]. 核动力工程,2020, 41(4): 96-100.
    [2] 姜卓尔,赵军,王海涛,等. 高温气冷堆蓄电池组地震易损性研究[J]. 核动力工程,2020, 41(4): 105-110.
    [3] HOSEYNI S M, HOSEYNI S M, YOUSEFPOUR F. Probabilistic analysis of containment structural performance in severe accidents[J]. International Journal of System Assurance Engineering and Management, 2017, 8(3): 625-634.
    [4] PIAN C, QIAN J, MUHO E V, et al. A hybrid force/displacement seismic design method for reinforced concrete moment resisting frames[J]. Soil Dynamics and Earthquake Engineering, 2020, 129: 105360.
    [5] KAVEH A, AZAR B F, HADIDI A, et al. Performance-based seismic design of steel frames using ant colony optimization[J]. Journal of Constructional Steel Research, 2010, 66(4): 566-574. doi: 10.1016/j.jcsr.2009.11.006
    [6] KORKMAZ M, OZDEMIR M A, KAVALI E, et al. Performance-based assessment of multi-story unreinforced masonry buildings: the case of historical khatib school in Erzurum, Turkey[J]. Engineering Failure Analysis, 2018, 94: 195-213. doi: 10.1016/j.engfailanal.2018.08.002
    [7] TONDINI N, ZANON G, PUCINOTTI R, et al. Seismic performance and fragility functions of a 3D steel-concrete composite structure made of high-strength steel[J]. Engineering Structures, 2018, 174: 373-383. doi: 10.1016/j.engstruct.2018.07.026
    [8] HUANG Y N, WHITTAKER A S, LUCO N. Seismic performance assessment of base-isolated safety-related nuclear structures[J]. Earthquake Engineering & Structural Dynamics, 2010, 39(13): 1421-1442.
    [9] HUANG Y N, WHITTAKER A S, LUCO N. A probabilistic seismic risk assessment procedure for nuclear power plants: (I) methodology[J]. Nuclear Engineering and Design, 2011, 241(9): 3996-4003. doi: 10.1016/j.nucengdes.2011.06.051
    [10] JIN S, GONG J X. Damage performance based seismic capacity and fragility analysis of existing concrete containment structure subjected to near fault ground motions[J]. Nuclear Engineering and Design, 2020, 360: 110478. doi: 10.1016/j.nucengdes.2019.110478
    [11] SAENZ L P. Discussion of equation for the stress-strain curve of concrete by Desayi and Krishman[J]. Journal of the American Concrete Institute, 1964, 61(9): 1229-1235.
    [12] HU H T, SCHNOBRICH W C. Nonlinear finite element analysis of reinforced concrete plates and shells under monotonic loading[J]. Computers & Structures, 1991, 38(5-6): 637-651.
    [13] JIN S, LI Z C, DONG Z F, et al. A simplified fragility analysis methodology for containment structure subjected to overpressure condition[J]. International Journal of Pressure Vessels and Piping, 2020, 184: 104104. doi: 10.1016/j.ijpvp.2020.104104
    [14] HIBBELER R C. Statics and mechanics of materials[M]. 5th ed. Hoboken: Pearson, 2017: 5-30.
    [15] Pacific Earthquake Engineering Research Center. PEER Strong Ground Motion Databases[EB/OL]. (2013)[2020-12-06]. https://peer.berkeley.edu.
    [16] 国家技术监督局, 中华人民共和国建设部. 核电厂抗震设计规范: GB 50267-1997[S]. 北京: 中国标准出版社, 1997: 1-20
    [17] MANDAL T K, GHOSH S, PUJARI N N. Seismic fragility analysis of a typical Indian PHWR containment: comparison of fragility models[J]. Structural Safety, 2016, 58: 11-19. doi: 10.1016/j.strusafe.2015.08.003
    [18] KALKAN E, KUNNATH S K. Effective cyclic energy as a measure of seismic demand[J]. Journal of Earthquake Engineering, 2007, 11(5): 725-751. doi: 10.1080/13632460601033827
    [19] KALKAN E, KUNNATH S K. Relevance of absolute and relative energy content in seismic evaluation of structures[J]. Advances in Structural Engineering, 2008, 11(1): 17-34. doi: 10.1260/136943308784069469
    [20] CHOPRA A K. Dynamics of structures: theory and application to earthquake engineering[M]. 2nd ed. Beijing: Tsinghua University Press, 2005: 40-60
    [21] LU Y, WEI J W. Damage-based inelastic response spectra for seismic design incorporating performance considerations[J]. Soil Dynamics and Earthquake Engineering, 2008, 28(7): 536-549. doi: 10.1016/j.soildyn.2007.08.002
    [22] IOANNOU I, CHANDLER R E, ROSSETTO T. Empirical fragility curves: the effect of uncertainty in ground motion intensity[J]. Soil Dynamics and Earthquake Engineering, 2020, 129: 105908. doi: 10.1016/j.soildyn.2019.105908
    [23] 金松. 考虑统计不确定性的安全壳易损性分析及概率安全评估[D]. 大连: 大连理工大学, 2021
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  374
  • HTML全文浏览量:  140
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-16
  • 录用日期:  2021-11-24
  • 修回日期:  2021-11-02
  • 刊出日期:  2022-04-02

目录

    /

    返回文章
    返回