高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modelica仿真技术在气冷式微型反应堆中的应用

梁洋洋 张慧敏 王力 李云龙 元一单 汪俊 堵树宏

梁洋洋, 张慧敏, 王力, 李云龙, 元一单, 汪俊, 堵树宏. Modelica仿真技术在气冷式微型反应堆中的应用[J]. 核动力工程, 2022, 43(2): 152-159. doi: 10.13832/j.jnpe.2022.02.0152
引用本文: 梁洋洋, 张慧敏, 王力, 李云龙, 元一单, 汪俊, 堵树宏. Modelica仿真技术在气冷式微型反应堆中的应用[J]. 核动力工程, 2022, 43(2): 152-159. doi: 10.13832/j.jnpe.2022.02.0152
Liang Yangyang, Zhang Huimin, Wang Li, Li Yunlong, Yuan Yidan, Wang Jun, Du Shuhong. The Application of Modelica Simulation Technology in Micro Gas-Cooled Reactor[J]. Nuclear Power Engineering, 2022, 43(2): 152-159. doi: 10.13832/j.jnpe.2022.02.0152
Citation: Liang Yangyang, Zhang Huimin, Wang Li, Li Yunlong, Yuan Yidan, Wang Jun, Du Shuhong. The Application of Modelica Simulation Technology in Micro Gas-Cooled Reactor[J]. Nuclear Power Engineering, 2022, 43(2): 152-159. doi: 10.13832/j.jnpe.2022.02.0152

Modelica仿真技术在气冷式微型反应堆中的应用

doi: 10.13832/j.jnpe.2022.02.0152
详细信息
    作者简介:

    梁洋洋(1991—),男,博士研究生,现从事核电厂系统建模与仿真研究,E-mail: liangyy337472@126.com

  • 中图分类号: TL365

The Application of Modelica Simulation Technology in Micro Gas-Cooled Reactor

  • 摘要: 相比传统大型核电厂,微型反应堆各系统功能间紧密耦合且相互制约,传统的分专业解耦设计模式难以应对,需开展全范围的系统仿真。采用Modelica语言建立了气冷式微型反应堆的系统仿真模型,以未能紧急停堆的预期瞬态(ATWS)事故为例开展事故分析计算,并与专业堆芯安全分析结果对比,结果表明反应堆功率变化趋势较为一致,且ATWS事故后仅依靠堆芯温度升高引入的负反应性可实现停堆。本文研究方法为气冷式微型反应堆的全系统建模仿真打下了坚实基础,也为其他类型反应堆的系统建模仿真提供了很好的借鉴作用。

     

  • 图  1  气冷式微型反应堆全系统

    Figure  1.  Whole System of Gas-cooled Micro Reactor

    图  2  反应堆系统结构与热工节块划分图

    Figure  2.  Reactor System Structure and Thermal Block Division       

    图  3  反应堆系统的Modelica模型

    Figure  3.  Modelica Model of Reactor System

    图  4  Zi的热工模型

    Figure  4.  Thermal Model of Zi

    图  5  冷却剂传热

    Figure  5.  Heat Transfer of Coolant

    图  6  燃料区热工模型

    Qfission,i,j—内热源形式的输入热能,W;Qcoolant,i,j—内部通道冷却剂对流传热的输出能量,W;Qradial,i1,j—径向内侧区域的输入导热能量(i=1的各节块不含此项),W;Qradial,i+1,j—向径向外侧区域的输出导热能量(i=4时,此项即为堆芯最外层与非燃料区反射层的导热能量),W;Qaxial,i,j1—轴向上侧节块的导热能量(j=1的各节块不含此项,输入输出由计算得出),W;Qaxial,i,j+1—轴向下侧节块的导热能量(j=6的各节块不含此项,输入输出由计算得出),W

    Figure  6.  Thermal Model of Fuel Region

    图  7  一维导热模型

    Qflow,cond—导热能量,W;port,a—内侧节块;port,b—外侧节块

    Figure  7.  One-Dimensional Heat Conduction Model

    图  8  二维导热模型

    nx—径向节块数;Qst,inner—径向内侧其他部件向热构件最内侧节块的输入能量(仅i=1的各节块含此项),W;Qst,outer—热构件最外侧节块向径向外侧其他部件的输出能量(仅i=nx的各节块含此项),W;Qst,radial,i1,j—热构件内部径向内侧节块的输入导热能量(i=1的各节块不含此项),W;Qst,radial,i+1,j—热构件内部径向外侧节块的输出导热能量(i=nx的各节块不含此项),W;Qst,axial,i,j−1—热构件内部轴向上侧节块的导热能量(j=1的各节块不含此项,输入输出由计算得出),W;Qst,axial,i,j+1—热构件内部轴向下侧节块的导热能量(j=6的各节块不含此项,输入输出由计算得出),W

    Figure  8.  Two-Dimensional Heat Conduction Model

    图  9  辐射传热模型

    Qflow,radi—吊篮外表面与压力容器内表面辐射能量,W

    Figure  9.  Radiation Heat Transfer Model

    图  10  对流传热模型

    Qflow,conv—压力容器外表面与环境的对流传热能量,W

    Figure  10.  Convection Heat Transfer Model

    图  11  堆芯与热构件的温度分布

    Figure  11.  Temperature Distribution of Core and Thermal Components

    图  12  ATWS事故各反应性

    Figure  12.  Reactivity in ATWS Accident

    图  13  ATWS事故堆芯平均温度

    Figure  13.  Average Core Temperature in ATWS Accident

    图  14  ATWS事故碘、氙浓度

    Figure  14.  Concentration of Iodine and Xenon in ATWS Accident       

    图  15  堆芯功率变化

    Figure  15.  Core Power Change

    图  16  ATWS事故堆芯与热构件的温度分布

    Figure  16.  Temperature Distribution of Core and Thermal Components in ATWS Accident

  • [1] 毛寅轩,袁建华. 基于模型系统工程方法研究与展望[J]. 电脑开发与应用,2014, 27(4): 71-75. doi: 10.3969/j.issn.1003-5850.2014.04.022
    [2] 张有山,杨雷,王平,等. 基于模型的系统工程方法在载人航天任务中的应用探讨[J]. 航天器工程,2014, 23(5): 121-128. doi: 10.3969/j.issn.1673-8748.2014.05.020
    [3] 朱静,杨晖,高亚辉,等. 基于模型的系统工程概述[J]. 航空发动机,2016, 42(4): 12-16.
    [4] FRITZSON P. Modelica语言导论-技术物理系统建模与仿真[M]. 周凡利, 译. 武汉: 华中科技大学出版社, 2020: 26-36.
    [5] 陈立平, 周凡利, 丁建完, 等. 多领域物理统一建模语言Modelica与MWorks系统建模[M]. 武汉: 华中科技大学出版社, 2019: 15-16.
    [6] 周凡利. 工程系统多领域统一模型编译映射与仿真求解研究[D]. 武汉: 华中科技大学, 2011.
    [7] 张柏楠,戚发轫,邢涛,等. 基于模型的载人航天器研制方法研究与实践[J]. 航空学报,2020, 41(7): 72-80.
    [8] 彭良辉,汤春桃,杨伟焱. 反应堆堆芯先进中子学模拟软件SCAP-N研发[J]. 核动力工程,2021, 42(2): 213-218.
    [9] 张红军. 压水反应堆稳态热工设计程序开发[J]. 核科学与工程,2019, 39(2): 309-314. doi: 10.3969/j.issn.0258-0918.2019.02.020
    [10] 刘炯,张帆,张瑞,等. 秦山核电二期工程反应堆控制系统设计[J]. 核动力工程,2003, 24(2): 231-234.
    [11] HALE R E, FUGATE D L, CETINER M S, et al. Update on ORNL transform tool: preliminary architecture/ modules for high-temperature gas-cooled reactor concepts and update on ALMR control: ORNL/SPR-2015/367[R]. USA: ORNL, 2015: 1-86.
    [12] GREENWOOD M S. Molten salt-fueled nuclear reactor model for licensing and safeguards investigations. Proceedings of the 1st American Modelica Conference[C]. Cambridge, Massachusetts, USA, 2018: 27-36.
    [13] GREENWOOD M S, BETZLER B, QUALLS L. Dynamic systems models for informing licensing & safeguards investigations of molten salt reactors: ORNL/TM-2018/876[R]. 2018: 1-67.
    [14] RADER J D, SMITH M B, GREENWOOD M S, et al. Nuclear thermal propulsion dynamic modeling with Modelica[C]. Nuclear and Emerging Technologies for Space, American Nuclear Society Topical Meeting, Richland, WA, USA, 2019: 1-4.
    [15] 黄彦平,曾小康,丁吉. 基于Modelica的两相热工水力特性仿真模型架构与概念验证[J]. 核动力工程,2021, 42(1): 1-7.
    [16] 杨林,刘兵,邵友林,等. 高温气冷堆包覆燃料颗粒破损机制及失效模型[J]. 核科学与工程,2010, 30(3): 210-215.
    [17] 谢仲生. 核反应堆物理分析[M]. 西安: 西安交通大学出版社, 2003: 175-177.
    [18] SHI D F, XHONNEUX A, UETA S, et al. Prediction of fission product release during the LOFC experiments at the HTTR: proceedings of the conference on high temperature reactors[C]. Weihai, China, 2014
    [19] GOU F, LIU Y, CHEN F B, et al. Thermal behavior of the HTR-10 Under combined PLOFC and ATWS condition initiated by unscrammed control rod withdrawal[J]. Nuclear Science and Techniques, 2018, 29(9): 81-89.
  • 加载中
图(16)
计量
  • 文章访问数:  412
  • HTML全文浏览量:  225
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-04
  • 修回日期:  2021-04-14
  • 刊出日期:  2022-04-02

目录

    /

    返回文章
    返回