[1] |
CHUN T H, OH D S. A pressure drop model for spacer grids with and without flow mixing vanes[J]. Journal of Nuclear Science and Technology, 1998, 35(7): 508-510. doi: 10.1080/18811248.1998.9733899
|
[2] |
LIU D, GU H Y. Study on heat transfer behavior in rod bundles with spacer grid[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1065-1075. doi: 10.1016/j.ijheatmasstransfer.2017.12.121
|
[3] |
YADIGAROGLU G, ANDREANI M, DREIER J, et al. Trends and needs in experimentation and numerical simulation for LWR safety[J]. Nuclear Engineering and Design, 2003, 221(1-3): 205-223. doi: 10.1016/S0029-5493(02)00339-4
|
[4] |
王莹杰,王明军,鞠浩然,等. 先进压水堆带定位格架5×5燃料棒束通道热工水力特性CFD数值模拟[J]. 核动力工程,2020, 41(S1): 6-11.
|
[5] |
王坤,董秀臣,刘海鹏,等. 小型压水堆压力容器内部三维流场计算[J]. 核动力工程,2020, 41(5): 20-23.
|
[6] |
MCCLUSKY H L, HOLLOWAY M V, CONOVER T A, et al. Mapping of the lateral flow field in typical subchannels of a support grid with vanes[J]. Journal of Fluids Engineering, 2003, 125(6): 987-996. doi: 10.1115/1.1625688
|
[7] |
HOSOKAWA S, YAMAMOTO T, OKAJIMA J, et al. Measurements of turbulent flows in a 2 × 2 rod bundle[J]. Nuclear Engineering and Design, 2012, 249: 2-13. doi: 10.1016/j.nucengdes.2011.11.035
|
[8] |
DOMINGUEZ-ONTIVEROS E E, HASSAN Y A. Non-intrusive experimental investigation of flow behavior inside a 5 × 5 rod bundle with spacer grids using PIV and MIR[J]. Nuclear Engineering and Design, 2009, 239(5): 888-898. doi: 10.1016/j.nucengdes.2009.01.009
|
[9] |
DOMINGUEZ-ONTIVEROS E, HASSAN Y A, CONNER M E, et al. Experimental benchmark data for PWR rod bundle with spacer-grids[J]. Nuclear Engineering and Design, 2012, 253: 396-405. doi: 10.1016/j.nucengdes.2012.09.003
|
[10] |
DOMINGUEZ-ONTIVEROS E, HASSAN Y A. Experimental study of a simplified 3 × 3 rod bundle using DPTV[J]. Nuclear Engineering and Design, 2014, 279: 50-59. doi: 10.1016/j.nucengdes.2014.04.037
|
[11] |
QU W H, WANG Z F, XIONG J B, et al. Experimental study of cross flow and lateral pressure drop in a 5 × 5 rod bundle with mixing vane spacer grid[J]. Nuclear Engineering and Design, 2019, 353: 110209. doi: 10.1016/j.nucengdes.2019.110209
|
[12] |
QU W H, XIONG J B, CHEN S L, et al. PIV measurement of turbulent flow downstream of mixing vane spacer grid in 5×5 rod bundle[J]. Annals of Nuclear Energy, 2019, 132: 277-287. doi: 10.1016/j.anucene.2019.04.016
|
[13] |
QU W H, XIONG J B, CHEN S L, et al. High-fidelity PIV measurement of cross flow in 5 × 5 rod bundle with mixing vane grids[J]. Nuclear Engineering and Design, 2019, 344: 131-143. doi: 10.1016/j.nucengdes.2019.01.021
|
[14] |
封亚. 带搅混翼格架的棒束通道内横向流场PIV实验研究[D]. 北京: 北京交通大学, 2016.
|
[15] |
周梦君,毛辉辉,封亚,等. 2×2棒束通道格架搅混翼横向流场PIV实验研究[J]. 核动力工程,2016, 37(4): 133-137.
|
[16] |
李兴,祁沛垚,谭思超,等. 脉动流下棒束通道内相位差及瞬态流场研究[J]. 原子能科学技术,2019, 53(8): 1402-1409. doi: 10.7538/yzk.2018.youxian.0808
|
[17] |
NISHIO S, OKAMOTO K, KOBAYASHI T, et al. Evaluation of system performance and uncertainty analysis of PIV (PIV-STD project)[C]//Proceedings of the 3rd International Workshop on Particle Image Velocimetry. Santa Barbara: Bulletin of Kobe University of Mercantile Marine, 1999: 465-470
|