高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉动流下定位格架下游时均流场分布特性研究

李兴 王强龙 谭思超 邱金荣 游曦鸣

李兴, 王强龙, 谭思超, 邱金荣, 游曦鸣. 脉动流下定位格架下游时均流场分布特性研究[J]. 核动力工程, 2022, 43(3): 46-52. doi: 10.13832/j.jnpe.2022.03.0046
引用本文: 李兴, 王强龙, 谭思超, 邱金荣, 游曦鸣. 脉动流下定位格架下游时均流场分布特性研究[J]. 核动力工程, 2022, 43(3): 46-52. doi: 10.13832/j.jnpe.2022.03.0046
Li Xing, Wang Qianglong, Tan Sichao, Qiu Jinrong, You Ximing. Research on Distribution Characteristics of Time-averaged Flow Field Downstream of Spacer Grid under Pulsating Flow[J]. Nuclear Power Engineering, 2022, 43(3): 46-52. doi: 10.13832/j.jnpe.2022.03.0046
Citation: Li Xing, Wang Qianglong, Tan Sichao, Qiu Jinrong, You Ximing. Research on Distribution Characteristics of Time-averaged Flow Field Downstream of Spacer Grid under Pulsating Flow[J]. Nuclear Power Engineering, 2022, 43(3): 46-52. doi: 10.13832/j.jnpe.2022.03.0046

脉动流下定位格架下游时均流场分布特性研究

doi: 10.13832/j.jnpe.2022.03.0046
基金项目: 国家重点研发计划资助项目(2017YFE0106200)
详细信息
    作者简介:

    李 兴(1991—),男,工程师 ,现主要从事反应堆热工水力研究,E-mail: 18944601910@163.com

    通讯作者:

    谭思超,E-mail: tansichao@hrbeu.edu.cn

  • 中图分类号: TL33

Research on Distribution Characteristics of Time-averaged Flow Field Downstream of Spacer Grid under Pulsating Flow

  • 摘要: 研究流量波动下棒束通道内定位格架下游瞬时流场演变特性对于揭示海洋条件下燃料组件内流动换热机理具有重要意义。本文应用粒子图像测速(PIV)技术获得了脉动流下棒束通道内定位格架下游时空演变流场结构,分析了脉动参数(脉动周期和脉动振幅)对定位格架下游速度分布和湍流特性的影响。结果表明,脉动流下定位格架下游时均速度与定常流动下时均速度差异较小,且基本不随脉动振幅和脉动周期变化而变化;脉动流下的定位格架下游横向速度和轴向速度均方根与定常流动下的速度均方根存在明显差异,且随脉动参数变化呈现出不同的变化趋势。本文研究结果有助于揭示燃料组件在非稳态条件下瞬态特性,并为燃料组件的设计和优化奠定基础。

     

  • 图  1  5×5实验本体

    Figure  1.  5×5 Test Section

    图  2  脉动参数对定位格架下游速度分布影响

    图中灰色部分位置对应图1中棒束位置;下同

    Figure  2.  Effect of Pulsating Parameters on Velocity Distribution Downstream of Spacer Grid

    图  3  脉动参数对定位格架下游速度均方根影响

    Figure  3.  Effect of Pulsating Parameters on RMS of Velocity Downstream of Spacer Grid

    图  4  脉动流下定位格架下游速度均方根沿程变化

    Figure  4.  RMS Variation of Velocity Downstream of Spacer Grid under Pulsating Flow

  • [1] CHUN T H, OH D S. A pressure drop model for spacer grids with and without flow mixing vanes[J]. Journal of Nuclear Science and Technology, 1998, 35(7): 508-510. doi: 10.1080/18811248.1998.9733899
    [2] LIU D, GU H Y. Study on heat transfer behavior in rod bundles with spacer grid[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1065-1075. doi: 10.1016/j.ijheatmasstransfer.2017.12.121
    [3] YADIGAROGLU G, ANDREANI M, DREIER J, et al. Trends and needs in experimentation and numerical simulation for LWR safety[J]. Nuclear Engineering and Design, 2003, 221(1-3): 205-223. doi: 10.1016/S0029-5493(02)00339-4
    [4] 王莹杰,王明军,鞠浩然,等. 先进压水堆带定位格架5×5燃料棒束通道热工水力特性CFD数值模拟[J]. 核动力工程,2020, 41(S1): 6-11.
    [5] 王坤,董秀臣,刘海鹏,等. 小型压水堆压力容器内部三维流场计算[J]. 核动力工程,2020, 41(5): 20-23.
    [6] MCCLUSKY H L, HOLLOWAY M V, CONOVER T A, et al. Mapping of the lateral flow field in typical subchannels of a support grid with vanes[J]. Journal of Fluids Engineering, 2003, 125(6): 987-996. doi: 10.1115/1.1625688
    [7] HOSOKAWA S, YAMAMOTO T, OKAJIMA J, et al. Measurements of turbulent flows in a 2 × 2 rod bundle[J]. Nuclear Engineering and Design, 2012, 249: 2-13. doi: 10.1016/j.nucengdes.2011.11.035
    [8] DOMINGUEZ-ONTIVEROS E E, HASSAN Y A. Non-intrusive experimental investigation of flow behavior inside a 5 × 5 rod bundle with spacer grids using PIV and MIR[J]. Nuclear Engineering and Design, 2009, 239(5): 888-898. doi: 10.1016/j.nucengdes.2009.01.009
    [9] DOMINGUEZ-ONTIVEROS E, HASSAN Y A, CONNER M E, et al. Experimental benchmark data for PWR rod bundle with spacer-grids[J]. Nuclear Engineering and Design, 2012, 253: 396-405. doi: 10.1016/j.nucengdes.2012.09.003
    [10] DOMINGUEZ-ONTIVEROS E, HASSAN Y A. Experimental study of a simplified 3 × 3 rod bundle using DPTV[J]. Nuclear Engineering and Design, 2014, 279: 50-59. doi: 10.1016/j.nucengdes.2014.04.037
    [11] QU W H, WANG Z F, XIONG J B, et al. Experimental study of cross flow and lateral pressure drop in a 5 × 5 rod bundle with mixing vane spacer grid[J]. Nuclear Engineering and Design, 2019, 353: 110209. doi: 10.1016/j.nucengdes.2019.110209
    [12] QU W H, XIONG J B, CHEN S L, et al. PIV measurement of turbulent flow downstream of mixing vane spacer grid in 5×5 rod bundle[J]. Annals of Nuclear Energy, 2019, 132: 277-287. doi: 10.1016/j.anucene.2019.04.016
    [13] QU W H, XIONG J B, CHEN S L, et al. High-fidelity PIV measurement of cross flow in 5 × 5 rod bundle with mixing vane grids[J]. Nuclear Engineering and Design, 2019, 344: 131-143. doi: 10.1016/j.nucengdes.2019.01.021
    [14] 封亚. 带搅混翼格架的棒束通道内横向流场PIV实验研究[D]. 北京: 北京交通大学, 2016.
    [15] 周梦君,毛辉辉,封亚,等. 2×2棒束通道格架搅混翼横向流场PIV实验研究[J]. 核动力工程,2016, 37(4): 133-137.
    [16] 李兴,祁沛垚,谭思超,等. 脉动流下棒束通道内相位差及瞬态流场研究[J]. 原子能科学技术,2019, 53(8): 1402-1409. doi: 10.7538/yzk.2018.youxian.0808
    [17] NISHIO S, OKAMOTO K, KOBAYASHI T, et al. Evaluation of system performance and uncertainty analysis of PIV (PIV-STD project)[C]//Proceedings of the 3rd International Workshop on Particle Image Velocimetry. Santa Barbara: Bulletin of Kobe University of Mercantile Marine, 1999: 465-470
  • 加载中
图(4)
计量
  • 文章访问数:  285
  • HTML全文浏览量:  78
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 录用日期:  2021-12-15
  • 修回日期:  2021-06-08
  • 刊出日期:  2022-06-07

目录

    /

    返回文章
    返回