高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RELAP5的LOCA喷放阶段下降段内CCFL特性研究

李想 孙皖 丁书华 黄涛 李仲春 潘良明

李想, 孙皖, 丁书华, 黄涛, 李仲春, 潘良明. 基于RELAP5的LOCA喷放阶段下降段内CCFL特性研究[J]. 核动力工程, 2022, 43(3): 58-65. doi: 10.13832/j.jnpe.2022.03.0058
引用本文: 李想, 孙皖, 丁书华, 黄涛, 李仲春, 潘良明. 基于RELAP5的LOCA喷放阶段下降段内CCFL特性研究[J]. 核动力工程, 2022, 43(3): 58-65. doi: 10.13832/j.jnpe.2022.03.0058
Li Xiang, Sun Wan, Ding Shuhua, Huang Tao, Li Zhongchun, Pan Liangming. Study on CCFL Characteristics in Downcomer during Discharge Phase of LOCA with RELAP5 Code[J]. Nuclear Power Engineering, 2022, 43(3): 58-65. doi: 10.13832/j.jnpe.2022.03.0058
Citation: Li Xiang, Sun Wan, Ding Shuhua, Huang Tao, Li Zhongchun, Pan Liangming. Study on CCFL Characteristics in Downcomer during Discharge Phase of LOCA with RELAP5 Code[J]. Nuclear Power Engineering, 2022, 43(3): 58-65. doi: 10.13832/j.jnpe.2022.03.0058

基于RELAP5的LOCA喷放阶段下降段内CCFL特性研究

doi: 10.13832/j.jnpe.2022.03.0058
基金项目: 国家重点研发计划资助项目(2018YFB1900400)
详细信息
    作者简介:

    李 想(1998—),女,硕士研究生,现主要从事反应堆热工水力分析研究,E-mail: 202010021050t@cqu.edu.cn

    通讯作者:

    孙 皖,E-mail: sunwan@cqu.edu.cn

  • 中图分类号: TL333

Study on CCFL Characteristics in Downcomer during Discharge Phase of LOCA with RELAP5 Code

  • 摘要: 反应堆失水事故(LOCA)后下降段通道内形成的两相逆流状态极有可能引发汽-液逆向流动限制(CCFL),不利于应急冷却水顺利进入堆芯,极大影响了核反应堆系统的安全性能。本研究基于RELAP5程序采用Wallis溢流关系式对UPFT实验装置进行建模并计算LOCA喷放阶段的下降段注水行为;通过对比下腔室蓄水量、下降段内压力及破口处蒸汽流量瞬态变化以验证模型的有效性,并对下降段通道内汽相速度场、液相体积分数分布特性进行分析。结果表明,由于下降段通道结构的三维特征引起的流动不均匀性影响了汽-液CCFL特性,随着蒸汽流量增大,在破口环路与下降段连接区域的压力梯度与向上流速度梯度越大,较少节点的划分方法很难真实反映下降段通道局部区域内汽-液溢流关系;在靠近破口的环路内注入的冷却水更难到达下腔室,而在远离破口环路的冷却水容易进入到下腔室;过热的蒸汽在流动过程中被冷却水冷却发生凝结现象,导致出口蒸汽流量小于进口蒸汽流量,且随着进口蒸汽流量的增大,凝结效应则随之减小。本研究所建立的模型与方法能够适用于LOCA喷放阶段下降段通道内的汽-液CCFL预测。

     

  • 图  1  UPTF Test 6工况下RELAP5模型节点图

    Figure  1.  Node Diagram of RELAP5 Model under Condition of UPTF Test 6

    图  2  RELAP5中调用CCFL模型的逻辑判断

    Figure  2.  Logic to Call CCFL Model in RELAP5

    图  3  蒸汽喷放后5 s下降段内轴向汽流速度分布云图

    Figure  3.  Contours of Axial Steam Velocity Distribution in the Downcomer 5 s after Steam Discharge

    图  4  下腔室蓄水量计算结果与实验值对比

    Figure  4.  Comparison between the Calculation Results of the Water Storage Capacity of Lower Chamber and the Experimental Values

    图  5  冷却水注入15 s后下降段内液相体积分数云图

    Figure  5.  Contours of Liquid Phase Volume Fraction in the Downcomer after Cooling Water Injection for 15 s

    图  6  下降段压力计算值与实验值对比

    Figure  6.  Comparison between Calculated Value and Experimental Value of Pressure in the Downcomer

    图  7  破口处蒸汽流量计算值与实验值对比

    Figure  7.  Comparison between Calculated Value and Experimental Value of Steam Flow at the Break

    图  8  蒸汽凝结率瞬态变化值

    Figure  8.  Transient Variation of Steam Condensation Ratio

    表  1  UPTF Test 6工况参数

    Table  1.   UPTF Test 6 Condition Parameters

    工况编号单个蒸汽发生器注
    汽量/(kg·s−1)
    堆芯模拟器注汽量/
    (kg·s−1)
    CL1、CL3、CL4的ECCS注
    水量/(kg·s−1)
    ECCS温度/K安全壳模拟器
    背压/kPa
    压力容器初始
    压力/kPa
    13129.0309482391.15252244
    13230.0205490385.15248250
    13331.0110491390.15256257
    1360.0102490387.15240245
    下载: 导出CSV
  • [1] AL ISSA S, MACIAN R. A review of CCFL phenomenon[J]. Annals of Nuclear Energy, 2011, 38(9): 1795-1819. doi: 10.1016/j.anucene.2011.04.021
    [2] AL ISSA S, MACIAN-JUAN R. Experimental investigation and CFD validation of countercurrent flow limitation (CCFL) in a large-diameter PWR hot-leg geometry[J]. Journal of Nuclear Science and Technology, 2016, 53(5): 647-655. doi: 10.1080/00223131.2015.1125312
    [3] GLAESER H, ROHATGI U S. Scaling ability of the counter-current flow limitation (CCFL) correlations for application to reactor thermal hydraulics[J]. Nuclear Engineering and Design, 2019, 354: 110226. doi: 10.1016/j.nucengdes.2019.110226
    [4] CHEN C Y, SHIH C, WANG J R, et al. Sensitivity study on the counter-current flow limitation in the DEG LBLOCA with the TRACE code[J]. Annals of Nuclear Energy, 2013, 57: 121-129. doi: 10.1016/j.anucene.2013.01.025
    [5] NIKITIN K, MUELLER P, MARTIN J, et al. BWR loss of coolant accident simulation by means of RELAP5[J]. Nuclear Engineering and Design, 2016, 309: 113-121. doi: 10.1016/j.nucengdes.2016.09.008
    [6] TAKEDA T, OHTSU I. RELAP5 uncertainty evaluation using ROSA/LSTF test data on PWR 17% cold leg intermediate-break LOCA with single-failure ECCS[J]. Annals of Nuclear Energy, 2017, 109: 9-21. doi: 10.1016/j.anucene.2017.05.007
    [7] 江灼威,蔡杰进. LOCA事故时一回路冷却剂管肘部回流流动极限研究[J]. 核科学与工程,2019, 39(3): 414-422. doi: 10.3969/j.issn.0258-0918.2019.03.011
    [8] SIDDIQUI H, BANERJEE S, ARDRON K H. Flooding in an elbow between a vertical and a horizontal or near-horizontal pipe: Part I: Experiments[J]. International Journal of Multiphase Flow, 1986, 12(4): 531-541. doi: 10.1016/0301-9322(86)90058-3
    [9] DAMERELL P S, SIMONS J W. 2D/3D program work summary report: NUREG/IA-0126[R]. Washington, DC: Nuclear Regulatory Commission, 1993
    [10] DAMERELL P S, SIMONS J W. Reactor safety issues resolved by the 2D/3D Program: NUREG/IA-0127[R]. Washington, DC: Nuclear Regulatory Commission, 1993.
    [11] U. S. NRC. RELAP5/MOD3.3 code manual Vol. 1: code structure, system models, and solution methods. Nuclear safety analysis division Office of Nuclear Regulatory Research U. S. Nuclear Regulatory Commission: RELAP5/MOD3.3 Code Manual: NUREG/CR-5535[R]. Rockville: Information Systems Laboratories, Inc. , 2001
    [12] WANG M J, ZHAO H, ZHANG H P, et al. Research on the designed emergency passive residual heat removal system during the station blackout scenario for CPR1000[J]. Annals of Nuclear Energy, 2012, 45: 86-93. doi: 10.1016/j.anucene.2012.03.004
    [13] WALLIS G B. One-dimensional two-phase flow[M]. New York: McGraw-Hill, 1969.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  157
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-21
  • 录用日期:  2021-12-07
  • 修回日期:  2021-09-02
  • 刊出日期:  2022-06-07

目录

    /

    返回文章
    返回