Research on the Key Influencing Factors of the Driving Force of the Primary Loop System of the Natural Circulation Lead-based Fast Reactor
-
摘要: 为深入研究影响自然循环铅基快堆一回路系统驱动力的关键因素,以自然循环铅基快堆SNCLFR-10为研究对象构建描述反应堆一回路自然循环稳态运行模型;从理论上量化分析冷/热池的热量传递、热源和热阱温度非线性分布、反应堆压力容器壁散热3种因素对自然循环能力的影响,并开展了相关数值模拟验证。结果表明,数值模拟结果与本研究理论计算值吻合较好;3种自然循环能力影响机制耦合作用将降低SNCLFR-10系统自然循环能力,导致自然循环流量与功率之间不再满足理论所得的1/3次方关系。
-
关键词:
- 自然循环驱动力 /
- 冷/热池传热 /
- 非线性温度分布 /
- 反应堆压力容器壁散热 /
- 关键影响因素
Abstract: In order to deeply study the key factors affecting the driving force of the primary loop system of the natural circulation lead-based fast reactor, taking the natural circulation lead-based fast reactor SNCLFR-10 as the research object, a steady-state operation model describing the natural circulation of the primary loop of the reactor was constructed; The effects of heat transfer in cold/hot pool, nonlinear temperature distribution of heat source and heat sink and heat dissipation of reactor pressure vessel wall on natural circulation capacity are quantitatively analyzed theoretically, and relevant numerical simulation verification is carried out. The results show that the numerical simulation results are in good agreement with the theoretical calculation values in this study; the coupling effect of the three natural circulation capacity influencing mechanisms will reduce the natural circulation capacity of the SNCLFR-10 system, resulting in the relationship between natural circulation flow and power no longer satisfying the 1/3 power obtained by theory. -
表 1 SNCLFR-10主要设计参数
Table 1. Main Design Parameters of SNCLFR-10
参数 数值 热功率/ MW 10 冷却剂 LBE合金 驱动方式 自然循环 一回路运行压力/ MPa 0.1 堆芯进口温度/K 533.15 质量流量/ (kg·s−1) 529.4 循环高度/m 2 堆芯出口温度/K 673.15 活性区高度/mm 800 芯块直径/mm 12.7 燃料组件内棒数 61 燃料组件数 74 表 2 冷/热池传热对SCNLFR-10自然循环能力的影响
Table 2. Effect of Heat Transfer in Cold/hot Pool on Natural Circulation Capacity of SCNLFR-10
$ \Delta {T_1} $/℃ $ \Delta {T_2} $/℃ $ \varepsilon $/% 1 0.98 −0.75 5 4.89 −3.75 10 9.78 −7.50 20 19.55 −15.01 30 29.33 −22.51 40 39.10 −30.01 50 48.87 −37.51 100 97.70 −75.01 表 3 等比例模型验证结果
Table 3. Verification Results of Equal Scale Model
参数 原堆参数 模型参数 相对误差/% 进口温度/K 533 534.40 0.26 出口温度/K 663 662.58 0.06 质量流量/(kg·s−1) 529 529.52 0.10 表 4 冷/热池间传热对自然循环能力的影响(CFD模拟结果)
Table 4. Effect of Heat Transfer in Cold/hot Pool on Natural Circulation Capacity (CFD Simulation Results)
$ \Delta {T_1} $/℃ 理论$\varepsilon $/% 模拟$\varepsilon $/% 相对误差/% 1 −0.75 −0.68 9.33 5 −3.75 −3.45 8.00 10 −7.50 −7.03 6.27 20 −15.01 −14.55 3.06 30 −22.51 −21.53 4.35 表 5 热源、热阱温度非线性分布对自然循环能力影响(CFD模拟结果)
Table 5. Effect of Nonlinear Temperature Distribution of Heat Source and Heat Sink on Natural Circulation Capability (CFD Simulation Results)
ac ah 理论$\varepsilon $/% 模拟$\varepsilon $/% 相对误差/% 5 −5 −0.82 −0.65 20.73 10, −10 −1.63 −1.32 19.02 20 −20 −3.27 −2.91 11.01 表 6 反应堆压力容器散热对系统自然循环能力的影响(CFD模拟结果)
Table 6. Effect of Reactor Vessel Heat Dissipation on Natural Circulation Capacity of the System (CFD Simulation Results)
$ \Delta {T_{\text{3}}} $/℃ $ \Delta {T_{\text{4}}} $/℃ $ \varepsilon $(理论)/% $ \varepsilon $(模拟)/% 相对误差/% 1.0 2.7 0.49 0.56 12.50 2.0 5.4 0.99 1.11 10.81 3.0 8.1 1.48 1.60 7.50 表 7 3种情况耦合对系统自然循环能力的影响(CFD模拟结果)
Table 7. Effect of Three Coupling Conditions on Natural Circulation Capacity (CFD Simulation Results)
$ \Delta {T_1} $/℃ $ \Delta {T_3} $/℃ $ \varepsilon $(理论)/% $ \varepsilon $(模拟)/% 相对误差/% 1 1 −3.52 −3.22 11.36 1 2 −6.52 −6.21 7.82 5 3 −3.03 −2.89 10.56 -
[1] CHEN H L, CHEN Z, CHEN C, et al. Conceptual design of a small modular natural circulation lead cooled fast reactor SNCLFR-100[J]. International Journal of Hydrogen Energy, 2016, 41(17): 7158-7168. doi: 10.1016/j.ijhydene.2016.01.101 [2] 周涛,李精精,琚忠云,等. 非能动自然循环技术的发展与研究[J]. 核安全,2013, 12(3): 32-36. doi: 10.3969/j.issn.1672-5360.2013.03.008 [3] 魏诗颖,王成龙,田文喜,等. 铅基快堆关键热工水力问题研究综述[J]. 原子能科学技术,2019, 53(2): 326-336. doi: 10.7538/yzk.2018.youxian.0335 [4] CHAI X, LIU X J, XIONG J B, et al. Numerical investigation of thermal-hydraulic behaviors in a LBE-cooled 19-pin wire-wrapped rod bundle[J]. Progress in Nuclear Energy, 2020, 119: 103044. doi: 10.1016/j.pnucene.2019.103044 [5] ZVIRIN Y. A review of natural circulation loops in pressurized water reactors and other systems[J]. Nuclear Engineering and Design, 1982, 67(2): 203-225. doi: 10.1016/0029-5493(82)90142-X [6] ZHAO P C, LI S Z, CHEN Z, et al. Natural circulation characteristics analysis of a small modular natural circulation lead–bismuth eutectic cooled fast reactor[J]. Progress in Nuclear Energy, 2015, 83: 220-228. doi: 10.1016/j.pnucene.2015.03.013 [7] LU Q Y. Stability analysis of a natural circulation lead-cooled fast reactor[D]. Urbana: University of Illinois at Urbana-Champaign, 2014. [8] 吴磊. 一体化自然循环反应堆一回路自然循环及稳压特性研究[D]. 北京: 清华大学, 2016. [9] 彭银波,张亚军,贾海军,等. 冷/热芯偏移对自然循环回路驱动力的影响[J]. 核动力工程,2018, 39(1): 38-42. [10] 黄洪文,刘汉刚,杨晓斌,等. 池式研究堆自然循环能力试验及数值模拟[J]. 原子能科学技术,2012, 46(S1): 206-210. [11] 王飞,聂常华,黄彦平,等. 自然循环静态特性实验研究[J]. 核科学与工程,2004, 24(2): 134-138. doi: 10.3321/j.issn:0258-0918.2004.02.008 [12] JANG B I, KIM M H, JEUN G. Transient analysis of natural circulation nuclear reactor REX-10[J]. Journal of Nuclear Science and Technology, 2011, 48(7): 1046-1056. doi: 10.1080/18811248.2011.9711789 [13] MA W M, KARBOJIAN A, SEHGAL B R. Experimental study on natural circulation and its stability in a heavy liquid metal loop[J]. Nuclear Engineering and Design, 2007, 237(15-17): 1838-1847. doi: 10.1016/j.nucengdes.2007.02.023 [14] 赵鹏程,朱恩平,余红星,等. 铅基快堆自然循环实验台架比例分析方法研究[J]. 核动力工程,2020, 41(6): 207-213. [15] 赵鹏程,刘紫静,于涛. 小型自然循环铅冷快堆无保护最热组件局部堵流瞬态分析[J]. 核动力工程,2019, 40(1): 23-27. doi: 10.13832/j.jnpe.2019.01.0023