高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PCA-GA-SVM的竖直下降两相流流型预测

乔守旭 钟文义 谭思超 李旭鹏 郝思佳

乔守旭, 钟文义, 谭思超, 李旭鹏, 郝思佳. 基于PCA-GA-SVM的竖直下降两相流流型预测[J]. 核动力工程, 2022, 43(3): 85-93. doi: 10.13832/j.jnpe.2022.03.0085
引用本文: 乔守旭, 钟文义, 谭思超, 李旭鹏, 郝思佳. 基于PCA-GA-SVM的竖直下降两相流流型预测[J]. 核动力工程, 2022, 43(3): 85-93. doi: 10.13832/j.jnpe.2022.03.0085
Qiao Shouxu, Zhong Wenyi, Tan Sichao, Li Xupeng, Hao Sijia. Prediction of Vertical-Downward Two-Phase Flow Pattern based on PCA-GA-SVM[J]. Nuclear Power Engineering, 2022, 43(3): 85-93. doi: 10.13832/j.jnpe.2022.03.0085
Citation: Qiao Shouxu, Zhong Wenyi, Tan Sichao, Li Xupeng, Hao Sijia. Prediction of Vertical-Downward Two-Phase Flow Pattern based on PCA-GA-SVM[J]. Nuclear Power Engineering, 2022, 43(3): 85-93. doi: 10.13832/j.jnpe.2022.03.0085

基于PCA-GA-SVM的竖直下降两相流流型预测

doi: 10.13832/j.jnpe.2022.03.0085
基金项目: 国家自然科学基金(11905039);国家博士后基金(2021T140148, 2019M651267)
详细信息
    作者简介:

    乔守旭(1988—),男,博士,副教授,现从事核反应堆热工水力方向研究,E-mail: qiaoshouxu@hrbeu.edu.cn

    通讯作者:

    谭思超,E-mail: tansichao@hrbeu.edu.cn

  • 中图分类号: TL334

Prediction of Vertical-Downward Two-Phase Flow Pattern based on PCA-GA-SVM

  • 摘要: 为提高小样本条件下的流型识别精度和时效性,提出了一种融合小波包分解(WPD)、主元分析(PCA)、遗传算法(GA)和支持向量机(SVM)的优化识别模型,并成功应用在竖直下降两相流流型辨识工作中。利用WPD对非平稳电导波动信号进行分解、重构,提取小波包能量构造特征向量;通过PCA对特征向量进行降维,降低特征输入的复杂性;同时采取GA全局迭代寻优的方式确定SVM的关键参数惩罚因子(C)和核函数参数(g)。对PCA-GA-SVM识别效果进行验证后与SVM、PCA-SVM、GA-SVM网络进行对比。结果表明,经过PCA和GA优化后的SVM网络在流型识别精度和时效性方面均提升显著,对泡状流、弹状流、搅拌流和环状流的总体预测精度达到了94.87%,耗时仅3.95 s,可满足在线识别需求。

     

  • 图  1  实验系统示意图及照片

    Figure  1.  Schematic Diagram and Photos of the Experiment System

    图  2  竖直下降两相流流型

    Figure  2.  Two-phase Flow Patterns in Vertical-downward Tube   

    图  3  1 kHz采集频率下各流型探针信号

    Figure  3.  Probe Signals of Different Flow Patterns at 1 kHz Acquisition Frequency

    图  4  信号S(0,0)小波包三层分解二叉树

    Figure  4.  Binary Tree Diagram of Signal S(0,0) Three-layer Decomposition by Wavelet Packet

    图  5  部分流型小波包能量特征分布

    (a)—环状流:jf=2 m/s, jg,loc=2.952 m/s;(b)—泡状流:jf =2 m/s, jg,loc=0.217 m/s;(c)—弹状流:jf=2 m/s, jg,loc=0.618 m/s;(d)—搅拌流:jf =2 m/s, jg,loc=1.752 m/s

    Figure  5.  Energy Characteristic Distribution of Wavelet Packets of Some Flow Patterns        

    图  6  特征值及贡献率变化趋势

    Figure  6.  The Variation Trend of Eigenvalues and Contribution Rate       

    图  7  主成分可视化分布

    Figure  7.  The Visualization Distribution of Principal Components       

    图  8  基于GA优化的SVM流型识别流程

    Figure  8.  The Flow Pattern Identification Process of SVM Based on GA Optimization

    图  9  随机划分训练、预测集

    注:流速方向竖直向下,一般定义为负值,因此将原点定义在右上角       

    Figure  9.  Randomly Divided into The Training Sets and Prediction Sets

    图  10  GA-SVM个体适应度曲线

    Figure  10.  The Individual Fitness Curve of GA-SVM

    图  11  SVM和PCA-GA-SVM分类错误流型信息

    Figure  11.  Details of Misclassification Patterns of SVM and PCA-GA-SVM

    表  1  最底层各节点重构信号所处频率范围

    Table  1.   The Frequency Range of Reconstructed Signals of Each Node at the Lowest Layer

    信号频率范围/Hz
    S(5,0)0~15.625
    S(5,1)15.625~31.25
    S(5,2)31.25~46.875
    S(5,3)46.875~62.5
    S(5,4)62.5~78.125
    S(5,5)78.125~93.75
    S(5,6)93.75~109.375
    S(5,7)109.375~125
    S(5,8)125~140.625
    $\cdots $$\cdots $
    S(5, 31)484.375~500
    下载: 导出CSV

    表  2  4类模型流型分类效果对比

    Table  2.   Comparison of Flow Pattern Classification Results Using Four Types of Models

    分类模型训练精度/%预测精度/%耗时/s
    SVM94.6292.3033.15
    GA-SVM95.6992.305.42
    PCA-SVM96.7794.8713.96
    PCA-GA-SVM96.7794.873.95
    下载: 导出CSV
  • [1] 周立加,杨瑞昌,张彬,等. 垂直上升管内气液两相流流型鉴别研究[J]. 工程热物理学报,2000, 21(3): 358-362. doi: 10.3321/j.issn:0253-231X.2000.03.024
    [2] ARCHIBONG-ESO A, BABA Y, NSEFIK-EYO E, et al. A study of two-phase air-water flow in horizontal and inclined pipelines[J]. International Journal of Scientific & Engineering Research, 2016, 7(12): 296-303.
    [3] BHAGWAT S M, GHAJAR A J. Similarities and differences in the flow patterns and void fraction in vertical upward and downward two phase flow[J]. Experimental Thermal and Fluid Science, 2012, 39: 213-227. doi: 10.1016/j.expthermflusci.2012.01.026
    [4] MILAN M, BORHANI N, THOME J R. Adiabatic vertical downward air–water flow pattern map: Influence of inlet device, flow development length and hysteresis effects[J]. International Journal of Multiphase Flow, 2013, 56: 126-137. doi: 10.1016/j.ijmultiphaseflow.2013.06.003
    [5] QIAO S X, MENA D, KIM S. Inlet effects on vertical-downward air–water two-phase flow[J]. Nuclear Engineering and Design, 2017, 312: 375-388. doi: 10.1016/j.nucengdes.2016.04.033
    [6] LI Z X, WANG G Y, YOUSAF M, et al. Flow structure and flow regime transitions of downward two-phase flow in large diameter pipes[J]. International Journal of Heat and Mass Transfer, 2018, 118: 812-822. doi: 10.1016/j.ijheatmasstransfer.2017.11.037
    [7] 薛玉卿,李会雄,姚超,等. 垂直向下管内两相流泡状-弹状流型转换研究[J]. 应用力学学报,2017, 34(4): 603-609.
    [8] TRAFALIS T B, OLADUNNI O, PAPAVASSILIOU D V. Two-phase flow regime identification with a multiclassification support vector machine (SVM) model[J]. Industrial & Engineering Chemistry Research, 2005, 44(12): 4414-4426.
    [9] 孙斌,周云龙. 基于支持向量机和小波包能量特征的气液两相流流型识别方法[J]. 中国电机工程学报,2005, 25(17): 93-99. doi: 10.3321/j.issn:0258-8013.2005.17.019
    [10] 孙斌,周云龙,赵鹏,等. 基于奇异值分解和最小二乘支持向量机的气-液两相流流型识别方法[J]. 核动力工程,2007, 28(6): 62-66. doi: 10.3969/j.issn.0258-0926.2007.06.015
    [11] ZHANG Y C, AZMAN A N, XU K W, et al. Two-phase flow regime identification based on the liquid-phase velocity information and machine learning[J]. Experiments in Fluids, 2020, 61(10): 212. doi: 10.1007/s00348-020-03046-x
    [12] KIM S, FU X Y, WANG X, et al. Development of the miniaturized four-sensor conductivity probe and the signal processing scheme[J]. International Journal of Heat and Mass Transfer, 2000, 43(22): 4101-4118. doi: 10.1016/S0017-9310(00)00046-6
    [13] 乔守旭,钟文义,谭思超,等. 竖直下降两相流相界面结构输运特性[J]. 原子能科学技术,2021, 55(2): 229-236. doi: 10.7538/yzk.2020.youxian.0166
    [14] 唐川林,汪志能,胡东,等. 基于小波包与Elman神经网络的气力提升装置流型识别技术研究[J]. 振动与冲击,2016, 35(15): 149-153.
    [15] 王奉涛,马孝江,邹岩崑,等. 基于小波包分解的频带局部能量特征提取方法[J]. 农业机械学报,2004, 35(5): 177-180. doi: 10.3969/j.issn.1000-1298.2004.05.044
    [16] JOLLIFFE I T, CADIMA J. Principal component analysis: a review and recent developments[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2016, 374(2016): 20150202.
    [17] 丁世飞,齐丙娟,谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报,2011, 40(1): 2-10.
    [18] HSU C W, LIN C J. A comparison of methods for multiclass support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425. doi: 10.1109/72.991427
    [19] 韩华,谷波,康嘉. 基于遗传算法和支持矢量机参数优化的制冷机组故障检测与诊断研究[J]. 机械工程学报,2011, 47(16): 120-126.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  426
  • HTML全文浏览量:  117
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 录用日期:  2021-12-09
  • 修回日期:  2021-11-26
  • 刊出日期:  2022-06-07

目录

    /

    返回文章
    返回