Analysis of Heat Transfer Characteristics of Natural Convection Condensation of Steam Containing Air under Different Tube Bundle Arrangements
-
摘要: 为研究非能动安全壳冷却系统(PCCS)热交换器管束布置对自然对流条件下含有空气的蒸汽冷凝换热特性的影响,采用气体组分输运方程和冷凝模型耦合,对单管、单排到五排管束通道内冷凝换热过程进行数值研究。研究发现,管束区内存在由于管间高浓度空气层干扰使冷凝换热能力减弱的“抑制效应”,以及由于水蒸气壁面冷凝导致气体横向流动使壁面冷凝能力强化的“抽吸效应”。对不同管束结构下2种效应对冷凝换热的影响进行分析,结果表明,随着管束排数的增加,2种效应对冷凝换热的影响逐渐增强,导致冷凝管周向局部冷凝换热能力不均匀性增加,其中五排管束周向局部冷凝换热系数(HTC)最大值为单管的2.3倍,最小值仅为单管的44.7%。在双排、三排和四排管束中,正四边形布置管束的冷凝换热能力优于正三角形布置,而五排管束中,正三角形布置的冷凝换热能力更强。本研究可对PCCS热交换器管束布置优化提供参考。Abstract: In order to study the effect of tube bundle arrangement of heat exchanger in passive containment cooling system (PCCS) on the condensation heat transfer characteristics of steam containing air under natural convection conditions, the condensation heat transfer process in channels of single tube, single-row to five-row tube bundles is numerically studied by coupling gas component transport equation and condensation model. It is found that there is a “inhibiting effect” that reduces the condensation heat transfer capacity due to the interference of high-concentration air layers between tube bundles, and a “suction effect” that strengthens the condensation capacity on the wall due to the transverse flow of gas caused by water vapor wall condensation. The influence of such two effects on condensation heat transfer under different tube bundle structures is analyzed. The results show that with the increase of the number of rows of tube bundles, the influence of the two effects on the condensation heat transfer gradually increases, leading to the increase of non-uniformity of circumferential local condensation heat transfer capacity of condensing tubes. Among them, the maximum circumferential local condensation heat transfer coefficient (HTC) of five-row tube bundles is 2.3 times that of single tube, and the minimum is only 44.7% of that of single tube. In the double-row, three-row and four-row tube bundles, the condensation heat transfer capacity of the regular quadrilateral arrangement is better than that of the regular triangle arrangement, while in the five-row tube bundle, the condensation heat transfer capacity of the regular triangle arrangement is stronger. This study can provide a technical reference for the optimization of the tube bundle arrangement of the PCCS heat exchanger.
-
Key words:
- Natural convection /
- Tube bundle /
- Steam condensation /
- Component transport model /
- Numerical simulation
-
表 1 COPAIN试验工况
Table 1. COPAIN Test Condition
工况 入口速度/
(m·s−1)压力/
MPa入口温
度/K壁面温
度/K空气质
量分数P0444 0.50 0.102 351.53 299.70 0.773 P0264 0.52 0.119 344.87 313.28 0.867 P0443 1.00 0.102 352.33 300.06 0.772 P0242 2.00 0.446 422.50 304.28 0.990 表 2 不同布置方式下管束的平均HTC
Table 2. Average HTC of Tube Bundles under Different Arrangements
序号 管束布置形式 平均HTC/(W·m−2·K−1) 1 单管 338.900 2 单排 336.225 3 双排正四边形布置 335.425 4 双排正三边形布置 332.275 5 三排正四边形布置 348.725 6 三排正三边形布置 344.800 7 四排正四边形布置 363.850 8 四排正三边形布置 360.975 9 五排正四边形布置 374.975 10 五排正三边形布置 387.325 -
[1] 陈文振, 于雷, 郝建立. 核动力装置热工水力[M]. 北京: 中国原子能出版社, 2013: 12-13. [2] ZSCHAECK G, FRANK T, BURNS A D. CFD modelling and validation of wall condensation in the presence of non-condensable gases[J]. Nuclear Engineering and Design, 2014, 279: 137-146. doi: 10.1016/j.nucengdes.2014.03.007 [3] FU W, LI X W, WU X X, et al. Numerical investigation of convective condensation with the presence of non-condensable gases in a vertical tube[J]. Nuclear Engineering and Design, 2016, 297: 197-207. doi: 10.1016/j.nucengdes.2015.11.034 [4] 宿吉强,孙中宁,张东洋. 含空气蒸汽冷凝数值计算模型建立与模拟[J]. 原子能科学技术,2014, 48(7): 1188-1193. doi: 10.7538/yzk.2014.48.07.1188 [5] 全标,边浩志,丁铭,等. 竖直管束外含空气蒸汽冷凝传热特性数值分析[J]. 核动力工程,2019, 40(5): 29-34. [6] DEHBI A, JANASZ F, BELL B. Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach[J]. Nuclear Engineering and Design, 2013, 258: 199-210. doi: 10.1016/j.nucengdes.2013.02.002 [7] CHENG X, BAZIN P, CORNET P, et al. Experimental data base for containment thermalhydraulic analysis[J]. Nuclear Engineering and Design, 2001, 204(1-3): 267-284. doi: 10.1016/S0029-5493(00)00311-3 [8] 边浩志,孙中宁,丁铭,等. 含空气蒸汽冷凝换热特性的数值模拟分析[J]. 哈尔滨工程大学学报,2019, 40(2): 426-432. [9] BIAN H Z, SUN Z N, CHENG X, et al. CFD evaluations on bundle effects for steam condensation in the presence of air under natural convection conditions[J]. International Communications in Heat and Mass Transfer, 2019, 98: 200-208.