Optimal Control of Stretch-out Operation for CPR1000 Nuclear Power Unit
-
摘要: 延伸运行(SO)是压水堆核电机组灵活运行的重要手段,研究如何提升机组SO模式下的安全性和经济性具有重要意义。针对某中国改进型三环路压水堆(CPR1000)核电机组某次SO模式下一回路平均温度、堆芯热功率、堆芯轴向功率偏差和温度调节棒棒位等重要参数存在波动的案例,研究表明波动的主要原因是由于该CPR1000核电机组的汽轮机高压调节阀运行在流量特性曲线的陡峭区,导致阀门开度在外部扰动影响下产生波动,并诱发主蒸汽流量、一回路平均温度等重要参数的波动。结合该核电机组设备的运行特性,提出优化高压调节阀流量特性曲线和优化主蒸汽流量限值等策略来提高机组SO期间安全性和经济性。数台CPR1000核电机组采用SO模式的工程实践案例验证了该策略的有效性。
-
关键词:
- 中国改进型三环路压水堆(CPR1000) /
- 延伸运行(SO) /
- 控制优化 /
- 经济性
Abstract: Stretch-out operation (SO) is an important means of flexible operation for PWR nuclear power unit. It is of great significance to study how to improve the safety and economy of the unit under SO mode. For the case of fluctuation of important parameters such as primary loop average temperature, core thermal power, core axial power deviation and temperature regulating rod (R rod) position of a Chinese improved three loop pressurized water reactor (CPR1000) nuclear power unit under SO mode, relevant research shows that the main reason is that the high-pressure regulating valve of the steam turbine of the CPR1000 nuclear power unit operates in the steep region of the flow characteristic curve, which causes the valve opening to fluctuate under the influence of external disturbances, and induces fluctuations of important parameters such as main steam flow, average temperature of primary loop, etc. Combined with the operation characteristics of the nuclear power unit, strategies such as optimizing the flow characteristic curve of the high-pressure regulating valve and optimizing the main steam flow limit are proposed to improve the safety and economy of the unit during SO. The effectiveness of the strategy is verified by several engineering cases of stretch-out operation of several CPR1000 nuclear power units.-
Key words:
- CPR1000 /
- Stretch-out Operation (SO) /
- Control optimization /
- Economy
-
表 1 B核电厂1号机组主蒸汽流量优化前后限值比较
Table 1. Comparison of Main Steam Flow Limits on B NPP Unit 1 before and after Optimization
参数名 优化前 优化后 热功率/MW 2963 2950 主蒸汽压力限值/% 102 101.0 蒸汽流量限值/% 102 100.9 额定热功率对应的
GRE阀门开度/%70 64 -
[1] 谢运利,李满仓,娄磊,等. 华龙一号堆芯延伸运行能力分析[J]. 科技创新导报,2020, 17(2): 28-31,33. [2] 尹浪,吴迪,申中祥,等. M310型压水堆核电厂延伸运行专项研究[J]. 科技创新导报,2020, 17(8): 47-48,50. [3] 廖业宏,肖岷,李现锋,等. 大亚湾核电站延伸运行及降功率期间反应堆轴向功率偏差的控制及其计算机模拟分析[J]. 核动力工程,2004, 25(4): 297-300. doi: 10.3969/j.issn.0258-0926.2004.04.003 [4] 肖岷,朱闽宏,李现锋,等. 大亚湾核电站延伸运行技术的研究与实施[J]. 核动力工程,2006, 27(1): 1-4,50. doi: 10.3969/j.issn.0258-0926.2006.01.001 [5] 朱闽宏,傅先刚,王斐,等. 大亚湾核电站延伸运行与长期低功率运行[J]. 核动力工程,2002, 23(5): 22-25,36. doi: 10.3969/j.issn.0258-0926.2002.05.006 [6] 周红,毛海耘,柴国旱,等. 对广东大亚湾核电厂延伸运行的监督实践[J]. 核安全,2004, 6(2): 26-29. [7] 厉井钢,张洪,梁薇,等. 岭澳核电站延伸运行工况下的功率能力分析[J]. 核动力工程,2005, 26(S6): 62-64. [8] 国际在线. 我国首座自主品牌CPR1000核反应堆启动[J]. 电网与清洁能源,2010, 26(6): 91 . [9] 柴伟东,赵清森. CPR1000机组蒸汽发生器裕度问题分析[J]. 热力发电,2019, 48(3): 126-131. [10] 舒相挺,蒋彦龙,杨璋. 某型核电汽轮机高压主汽调节阀组稳定性研究[J]. 汽轮机技术,2020, 62(3): 209-212,216. doi: 10.3969/j.issn.1001-5884.2020.03.014 [11] 杨璋,蒋彦龙. 某型核电汽轮发电机组一次调频功能试验[J]. 热力发电,2020, 49(1): 109-81. [12] 徐辛酉,宋凯,陈璞洁,等. 某核电汽轮机主调门流量特性曲线对DEH控制系统的影响分析[J]. 机械工程师,2015(6): 176-177. doi: 10.3969/j.issn.1002-2333.2015.06.075 [13] 董威,黄美华,曾彬. 核电厂汽机主调节阀阀位波动问题研究[J]. 自动化仪表,2015, 36(11): 50-52,56. [14] 王青青,李国栋,关建军. 汽轮机高压调阀动力油软管漏油原因分析[J]. 设备管理与维修,2016, 397(S1): 79-81.