高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于平衡冷凝模型的超临界CO2压缩机内部冷凝数值分析

陈来杰 卢川 沈昕 易经纬 李洋 欧阳华 杜朝辉

陈来杰, 卢川, 沈昕, 易经纬, 李洋, 欧阳华, 杜朝辉. 基于平衡冷凝模型的超临界CO2压缩机内部冷凝数值分析[J]. 核动力工程, 2022, 43(3): 165-172. doi: 10.13832/j.jnpe.2022.03.0165
引用本文: 陈来杰, 卢川, 沈昕, 易经纬, 李洋, 欧阳华, 杜朝辉. 基于平衡冷凝模型的超临界CO2压缩机内部冷凝数值分析[J]. 核动力工程, 2022, 43(3): 165-172. doi: 10.13832/j.jnpe.2022.03.0165
Chen Laijie, Lu Chuan, Shen Xin, Yi Jingwei, Li Yang, Ouyang Hua, Du Zhaohui. Numerical Simulation of Condensation in Supercritical CO2 Compressor Based on Equilibrium Condensation Model[J]. Nuclear Power Engineering, 2022, 43(3): 165-172. doi: 10.13832/j.jnpe.2022.03.0165
Citation: Chen Laijie, Lu Chuan, Shen Xin, Yi Jingwei, Li Yang, Ouyang Hua, Du Zhaohui. Numerical Simulation of Condensation in Supercritical CO2 Compressor Based on Equilibrium Condensation Model[J]. Nuclear Power Engineering, 2022, 43(3): 165-172. doi: 10.13832/j.jnpe.2022.03.0165

基于平衡冷凝模型的超临界CO2压缩机内部冷凝数值分析

doi: 10.13832/j.jnpe.2022.03.0165
基金项目: 航空发动机及燃气轮机重大专项(J2019-II-0005-0025);中国核工业集团有限公司2020年度领创科研课题
详细信息
    作者简介:

    陈来杰(1996—),男,硕士研究生,现主要从事超临界二氧化碳压缩机内部复杂流动特性研究,E-mail: chenlaijie@sjtu.edu.cn

  • 中图分类号: TL334

Numerical Simulation of Condensation in Supercritical CO2 Compressor Based on Equilibrium Condensation Model

  • 摘要: 超临界二氧化碳(sCO2)布雷顿循环是第四代核反应堆能量转换系统主要解决方案之一,实际运行中,压缩机内sCO2可能发生凝结,导致效率降低,运行稳定性受到影响。本文结合Span-Wagner物性模型,建立了sCO2的平衡冷凝数值模型,对sCO2压缩机进行数值模拟,分析了sCO2冷凝的主要区域、成因及影响。结果表明,sCO2的凝结主要受流速影响,发生于压缩机主叶片前缘吸力面的50%叶高以上区域及前缘间隙内近压力面区域,前一区域由sCO2的局部加速所致,后一区域由叶顶间隙泄漏所致;在给定工况下,冷凝区域很小,未扩展到整个通道,冷凝的sCO2很少,未形成两相流,对压缩机运行的影响很小。

     

  • 图  1  RGP表格无关性验证结果

    Figure  1.  Independence Validation of RGP Form

    图  2  RGP和NIST的cp对比

    Figure  2.  Comparison of cp between RGP and NIST

    图  3  数值方法验证结果

    Figure  3.  Results of Validation of Numerical Method

    图  4  叶轮网格划分

    Figure  4.  Impeller Meshing

    图  5  网格无关性验证结果

    Figure  5.  Mesh Independence Verification Results

    图  6  计算工况

    Figure  6.  Calculation Conditions

    图  7  流场分析涉及的研究区域图示

    ω—叶轮旋转角速度

    Figure  7.  Illustration of the Study Area Involved in the Flow Field Analysis

    图  8  转速为50000 r/min时的性能曲线

    Figure  8.  Performance Curve at 50000 r/min

    图  9  50%叶高处sCO2状态及冷凝情况

    Figure  9.  Status and Condensation of sCO2 at 50% Blade Height      

    图  10  sCO2速度的分布及其对状态的影响

    Figure  10.  Distribution of sCO2 Velocity and Its Influence on Status     

    图  11  主叶片表面的静温、静压云图与冷凝区域

    Figure  11.  Static Temperature, Static Pressure Contour and Condensation Area on the Main Blade Surface

    图  12  叶表前缘20%、50%和80%叶高处的速度

    Figure  12.  Velocities at 20%, 50% and 80% of the Blade Height at the Leading Edge of the Blade Surface

    图  13  主叶片前缘处的速度三角形

    Figure  13.  Velocity Triangle at Main Blade Leading Edge

    图  14  叶表前缘20%、50%和80%叶高处sCO2密度

    Figure  14.  sCO2 Density at 20%, 50% and 80% of the Blade Height at the Leading Edge of the Blade Surface

    表  1  叶轮几何尺寸信息

    Table  1.   Impeller Geometry

    参数名参数值参数名参数值
    主叶片数量6叶顶间隙/mm0.254
    分流叶片数量6前缘叶厚/mm0.762
    轮毂进口半径/mm2.54尾缘叶厚/mm0.762
    轮盖进口半径/mm9.37前缘叶高/mm1.7
    出口半径/mm18.68前缘几何角37.13°
    轴向长度/mm15.9尾缘几何角−50°
    下载: 导出CSV
  • [1] 黄彦平,王俊峰. 超临界二氧化碳在核反应堆系统中的应用[J]. 核动力工程,2012, 33(3): 21-27. doi: 10.3969/j.issn.0258-0926.2012.03.005
    [2] ABRAM T, ION S. Generation-IV nuclear power: A review of the state of the science[J]. Energy Policy, 2008, 36(12): 4323-4330. doi: 10.1016/j.enpol.2008.09.059
    [3] QIN H, WANG C L, TIAN W X, et al. Energy allocation optimization of the gas-cooled space nuclear reactor[J]. Applied Thermal Engineering, 2021, 196: 117289. doi: 10.1016/j.applthermaleng.2021.117289
    [4] HEJZLAR P, POPE M J, WILLIAMS W C, et al. Gas cooled fast reactor for generation IV service[J]. Progress in Nuclear Energy, 2005, 47(1-4): 271-282. doi: 10.1016/j.pnucene.2005.05.077
    [5] XU J L, SUN E H, LI M J, et al. Key issues and solution strategies for supercritical carbon dioxide coal fired power plant[J]. Energy, 2018, 157: 227-246. doi: 10.1016/j.energy.2018.05.162
    [6] DOSTAL D, DRISCOLL M J, HEZZLAR D. A supercritical CO2 cycle for next generation nuclear reactors[J]. Massachusetts Institute of Technology, 2004, 3(154): 265-282.
    [7] 吴攀,高春天,单建强. 超临界二氧化碳布雷顿循环在核能领域的应用[J]. 现代应用物理,2019, 10(3): 77-86.
    [8] MATOS A J M. Preliminary aerodynamic design of a supercritical carbon dioxide centrifugal compressor[D]. Ottawa: Carleton University, 2018.
    [9] WRIGHT S A, RADEL R F, VERNON M E, et al. Operation and analysis of a supercritical CO2 Brayton cycle[R]. Albuquerque: Sandia National Laboratories, 2010.
    [10] BALTADJIEV N D. An investigation of real gas effects in supercritical CO2 compressors[D]. Cambridge: Massachusetts Institute of Technology, 2012.
    [11] PECNIK R, RINALDI E, COLONNA P. Computational fluid dynamics of a radial compressor operating with supercritical CO2[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(12): 122301. doi: 10.1115/1.4007196
    [12] BALTADJIEV N D, LETTIERI C, SPAKOVSZKY Z S. An investigation of real gas effects in supercritical CO2 centrifugal compressors[J]. Journal of Turbomachinery, 2015, 137(9): 091003. doi: 10.1115/1.4029616
    [13] BAO W R, YANG C, FU L, et al. Non-uniform two-phase flow of supercritical carbon dioxide centrifugal compressor[C]//ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Virtual: ASME, 2020.
    [14] RAMAN S K, KIM H D. Computational analysis of the performance characteristics of a supercritical CO2 centrifugal compressor[J]. Computation, 2018, 6(4): 54. doi: 10.3390/computation6040054
    [15] 郑宽宽,赵航,丰镇平. 超临界二氧化碳离心压气机内部流动特性分析[J]. 工程热物理学报,2015, 36(5): 985-988.
    [16] 张国杰. 基于修正模型的非平衡凝结流动数值研究[D]. 徐州: 中国矿业大学, 2018.
    [17] AKHTAR F B, WEBB R A, EBRAHIMI M. An investigation of nucleating flows of steam in a cascade of turbine blading-theoretical treatment[J]. Transactions of the ASME Journal of Turbomachinery, 1993, 117(1): 121-127.
    [18] SPAN R, WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596. doi: 10.1063/1.555991
    [19] RINALDI E, PECNIK R, COLONNA P. Accurate and efficient look-up table approach for dense gas flow simulations[C]//Sixth European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Vienna, Austria, Sept. 2012: 10-14.
    [20] BERANA M S, NAKAGAWA M, HARADA A. Shock waves in supersonic two-phase flow of CO2 in converging-diverging nozzles[J]. HVAC & R Research, 2009, 15(6): 1081-1098.
    [21] WRIGHT S A, PICKARD P S, FULLER R, et al. Supercritical CO2 Brayton cycle power generation development program and initial test results[C]//ASME power conference. 2009, 43505: 573-583.
    [22] WRIGHT S A. Modeling and experimental results for condensing supercritical CO2 power cycles[R]. Albuquerque, NM: Sandia National Laboratories, 2011.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  23
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 修回日期:  2021-09-16
  • 刊出日期:  2022-06-07

目录

    /

    返回文章
    返回