高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

UO2燃料裂变气体渗流模型研究

李文杰 齐飞鹏 孙丹 辛勇 李权 李垣明

李文杰, 齐飞鹏, 孙丹, 辛勇, 李权, 李垣明. UO2燃料裂变气体渗流模型研究[J]. 核动力工程, 2022, 43(3): 226-231. doi: 10.13832/j.jnpe.2022.03.0226
引用本文: 李文杰, 齐飞鹏, 孙丹, 辛勇, 李权, 李垣明. UO2燃料裂变气体渗流模型研究[J]. 核动力工程, 2022, 43(3): 226-231. doi: 10.13832/j.jnpe.2022.03.0226
Li Wenjie, Qi Feipeng, Sun Dan, Xin Yong, Li Quan, Li Yuanming. Research on Percolation Models of UO2 Fission Gas Release[J]. Nuclear Power Engineering, 2022, 43(3): 226-231. doi: 10.13832/j.jnpe.2022.03.0226
Citation: Li Wenjie, Qi Feipeng, Sun Dan, Xin Yong, Li Quan, Li Yuanming. Research on Percolation Models of UO2 Fission Gas Release[J]. Nuclear Power Engineering, 2022, 43(3): 226-231. doi: 10.13832/j.jnpe.2022.03.0226

UO2燃料裂变气体渗流模型研究

doi: 10.13832/j.jnpe.2022.03.0226
基金项目: 核反应堆系统设计技术重点实验室开放基金2019年基金(6142A07190101)
详细信息
    作者简介:

    李文杰(1986—),男,博士,高级工程师,现主要从事新型反应堆、新型核燃料科研工作,E-mail: lwj04@tsinghua.org.cn

  • 中图分类号: TL334

Research on Percolation Models of UO2 Fission Gas Release

  • 摘要: 为分析UO2燃料晶界气泡连通导致裂变气体间歇性释放的动力学过程,从而解决目前扩散模型预测的沿芯块径向释放份额与实验测量不符的问题,采用二维渗流模型模拟UO2燃料晶界气泡网络的演化及与燃料棒内自由空间连通的释放过程。研究结果表明,渗流模型预测沿芯块径向的裂变气体释放份额在芯块中间部分出现局部峰值,并随着时间向芯块外侧推进,与辐照试验观察到不同燃耗下径向裂变气体分布现象定性符合。因此,本研究建立的渗流模型能够从机理上解释此前扩散模型未能预测的UO2燃料裂变气体释放份额沿径向非单调分布现象。

     

  • 图  1  UO2燃料晶界示意图

    Figure  1.  UO2 Fuel Grain Boundary Diagram

    图  2  渗流模型的晶界网络

    Figure  2.  Grain Boundary Network in Percolation Model

    图  3  渗流模型计算流程图

    Figure  3.  Diagram of Percolation Model

    图  4  饱和晶界及渗流团簇随时间的演化

    Figure  4.  Evolution of Saturated Grain Boundaries and Percolation Clusters with Time

    图  5  裂变气体释放份额沿径向的分布

    Figure  5.  Radial Distribution of Fission Gas Release Share

    图  6  t=860 d饱和晶界和裂变气体释放份额沿径向分布

    Figure  6.  Saturated Grain Boundaries and Radial Distribution of Fission Gas Release Share at t=860 d

  • [1] VAN UFFELEN P, HALES J, LI W, et al. A review of fuel performance modelling[J]. Journal of Nuclear Materials, 2019, 516: 373-412. doi: 10.1016/j.jnucmat.2018.12.037
    [2] REST J, COOPER M W D, SPINO J, et al. Fission gas release from UO2 nuclear fuel: a review[J]. Journal of Nuclear Materials, 2019, 513: 310-345. doi: 10.1016/j.jnucmat.2018.08.019
    [3] TONKS M, ANDERSSON D, DEVANATHAN R, et al. Unit mechanisms of fission gas release: Current understanding and future needs[J]. Journal of Nuclear Materials, 2018, 504: 300-317. doi: 10.1016/j.jnucmat.2018.03.016
    [4] PETRIE C M, BURNS J R, RAFTERY A M, et al. Separate effects irradiation testing of miniature fuel specimens[J]. Journal of Nuclear Materials, 2019, 526: 151783. doi: 10.1016/j.jnucmat.2019.151783
    [5] STAN M, RAMIREZ J C, CRISTEA P, et al. Models and simulations of nuclear fuel materials properties[J]. Journal of Alloys and Compounds, 2007, 444-445: 415-423. doi: 10.1016/j.jallcom.2007.01.102
    [6] HU S Y, LI Y L, SUN X, et al. Application of the phase-field method in predicting gas bubble microstructure evolution in nuclear fuels[J]. International Journal of Materials Research, 2010, 101(4): 515-522. doi: 10.3139/146.110304
    [7] MILLETT P C, TONKS M R, BINER S B. Grain boundary percolation modeling of fission gas release in oxide fuels[J]. Journal of Nuclear Materials, 2012, 424(1-3): 176-182. doi: 10.1016/j.jnucmat.2012.03.006
    [8] TURNBULL J A, TUCKER M O. Swelling in UO2 under conditions of gas release[J]. The Philosophical Magazine, 1974, 30(1): 47-63. doi: 10.1080/14786439808206532
    [9] DOWLING D M, WHITE R J, TUCKER M O. The effect of irradiation-induced re-solution on fission gas release[J]. Journal of Nuclear Materials, 1982, 110(1): 37-46. doi: 10.1016/0022-3115(82)90405-6
    [10] SPEIGHT M V. A calculation on the migration of fission gas in material exhibiting precipitation and re-solution of gas atoms under irradiation[J]. Nuclear Science and Engineering, 1969, 37(2): 180-185. doi: 10.13182/NSE69-A20676
    [11] BOOTH A H. A method of calculating fission gas diffusion from UO2 fuel and its application to the X-2-f loop test: NSA-12-000399[R]. Canada: Atomic Energy of Canada Ltd. , 1957.
    [12] FORSBERG K, MASSIH A R. Fission gas release under time-varying conditions[J]. Journal of Nuclear Materials, 1985, 127(2-3): 141-145. doi: 10.1016/0022-3115(85)90348-4
    [13] GOULD H, TOBOCHNIK J, CHRISTIAN W. An introduction to computer simulation methods[M]. 3rd ed. Boston: Addison Wesley, 2016.
    [14] NOIROT J, AUBRUN I, DESGRANGES L, et al. High burnup changes in UO2 fuels irradiated up to 83 GWd/t in M5® claddings[J]. Nuclear Engineering and Technology, 2009, 41(2): 155-162. doi: 10.5516/NET.2009.41.2.155
  • 加载中
图(6)
计量
  • 文章访问数:  911
  • HTML全文浏览量:  110
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-25
  • 录用日期:  2022-04-13
  • 修回日期:  2022-03-30
  • 刊出日期:  2022-06-07

目录

    /

    返回文章
    返回