高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同管径与倾角下单管和管束外含空气蒸汽冷凝对比分析

邹志强 武铃珺 李方立 边浩志 曹博洋 丁铭

邹志强, 武铃珺, 李方立, 边浩志, 曹博洋, 丁铭. 不同管径与倾角下单管和管束外含空气蒸汽冷凝对比分析[J]. 核动力工程, 2022, 43(4): 11-17. doi: 10.13832/j.jnpe.2022.04.0011
引用本文: 邹志强, 武铃珺, 李方立, 边浩志, 曹博洋, 丁铭. 不同管径与倾角下单管和管束外含空气蒸汽冷凝对比分析[J]. 核动力工程, 2022, 43(4): 11-17. doi: 10.13832/j.jnpe.2022.04.0011
Zou Zhiqiang, Wu Lingjun, Li Fangli, Bian Haozhi, Cao Boyang, Ding Ming. Comparative Analysis of Steam Condensation Consisting of Air Outside of Single Tubes and Tube Bundles with Different Tube Diameters and Inclination Angles[J]. Nuclear Power Engineering, 2022, 43(4): 11-17. doi: 10.13832/j.jnpe.2022.04.0011
Citation: Zou Zhiqiang, Wu Lingjun, Li Fangli, Bian Haozhi, Cao Boyang, Ding Ming. Comparative Analysis of Steam Condensation Consisting of Air Outside of Single Tubes and Tube Bundles with Different Tube Diameters and Inclination Angles[J]. Nuclear Power Engineering, 2022, 43(4): 11-17. doi: 10.13832/j.jnpe.2022.04.0011

不同管径与倾角下单管和管束外含空气蒸汽冷凝对比分析

doi: 10.13832/j.jnpe.2022.04.0011
详细信息
    作者简介:

    邹志强(1984—),男,高级工程师,现主要从事反应堆安全分析工作,E-mail: zhiqzou@163.com

  • 中图分类号: TL332

Comparative Analysis of Steam Condensation Consisting of Air Outside of Single Tubes and Tube Bundles with Different Tube Diameters and Inclination Angles

  • 摘要: 为评估不同传热管结构参数下单管与管束外含空气蒸汽冷凝传热规律的差异,基于外径12~19 mm、倾角0°~90°的单管和3×3管束在压力0.2~1.6 MPa、空气质量份额12%~87%的参数范围内开展了试验研究。结果表明:不同压力范围内,管径和倾角对单管和管束的影响呈现不同的规律。在压力小于0.8 MPa时,管束冷凝传热受管径和倾角影响的规律与单管总体一致,两者的冷凝传热系数均随管径和倾角的减小而增大。在0.8~1.6 MPa时,管束冷凝传热受管径和倾角的影响与单管存在明显差异。结合不凝性气体影响蒸汽冷凝传热的机制对所呈现的一致性和差异性规律进行了分析。

     

  • 图  1  试验装置示意图

    Tg—气空间温度测点;Tf—冷却水进出口温度测点;Gf—冷却水流量测点;Pg—压力传感器测点;Va、Vb、Vf、Vg—系统中的各类阀门;A~F—六个不同高度的截面

    Figure  1.  Schematic Diagram of the Test Device

    图  2  不同热工参数下单管和管束冷凝传热对比

    Figure  2.  Comparison between Single Tube and Tube Bundle Condensation Heat Transfer at Different Thermal Parameters

    图  3  低压下管径对单管和管束冷凝的影响

    Figure  3.  The Effect of Tube Diameter on Single Tube and Tube Bundle Condensation at Low Pressures

    图  4  高压下管径对单管和管束冷凝的影响

    Figure  4.  The Effect of Tube Diameter on Single Tube and Tube Bundle Condensation at High Pressures

    图  5  低压下倾角对单管和管束冷凝的影响

    Figure  5.  The Effect of Inclination Angle on Single Tube and Tube Bundle Condensation at Low Pressures

    图  6  高压下倾角对单管和管束冷凝的影响

    Figure  6.  The Effect of Tube Diameter on Single Tube and Tube Bundle Condensation at High Pressures

    表  1  不同压力条件下相对不确定度

    Table  1.   Relative Uncertainty under Different Pressure Conditions

    压力/MPa最大不确定度最小不确定度平均不确定度
    0.150.2150.1010.158
    0.200.1460.0540.089
    0.400.0760.0380.050
    0.600.0650.0350.043
    0.800.0580.0350.042
    1.000.0520.0340.040
    1.300.0450.0340.038
    1.600.0420.0340.037
    下载: 导出CSV
  • [1] 欧阳予. 国外核电技术发展趋势(上)[J]. 中国核工业,2006(1): 23-26.
    [2] BIAN H Z, SUN Z N, ZHANG N, et al. A new modified diffusion boundary layer steam condensation model in the presence of air under natural convection conditions[J]. International Journal of Thermal Sciences, 2019, 145: 105948. doi: 10.1016/j.ijthermalsci.2019.05.004
    [3] 李军,李晓明,朱晨,等. 基于分离式热管换热器的非能动安全壳热量导出系统实验研究[J]. 原子能科学技术,2018, 52(3): 453-458. doi: 10.7538/yzk.2017.youxian.0262
    [4] BIAN H Z, SUN Z N, ZHANG N, et al. A preliminary assessment on a two-phase steam condensation model in nuclear containment applications[J]. Annals of Nuclear Energy, 2018, 121: 615-625. doi: 10.1016/j.anucene.2018.08.012
    [5] BIAN H Z, SUN Z N, DING M, et al. Local phenomena analysis of steam condensation in the presence of air[J]. Progress in Nuclear Energy, 2017, 101: 188-198. doi: 10.1016/j.pnucene.2017.08.002
    [6] UCHIDA H, OYAMA A, TOGO Y. Evaluation of post-incident cooling systems of light water power reactors[R]. Tokyo: Tokyo University, 1964.
    [7] LIU H, TODREAS N E, DRISCOLL M J. An experimental investigation of a passive cooling unit for nuclear plant containment[J]. Nuclear Engineering and Design, 2000, 199(3): 243-255. doi: 10.1016/S0029-5493(00)00229-6
    [8] DEHBI A A. Analytical and experimental investigation of the effects of non-condensable gases on steam condensation under turbulent natural convection conditions[D]. Cambridge: Massachusetts Institute of Technology, 1990.
    [9] FAN G M, TONG P, SUN Z N, et al. Development of a new empirical correlation for steam condensation rates in the presence of air outside vertical smooth tube[J]. Annals of Nuclear Energy, 2018, 113: 139-146. doi: 10.1016/j.anucene.2017.11.021
    [10] SU J Q, SUN Z N, FAN G M, et al. Experimental study of the effect of non-condensable gases on steam condensation over a vertical tube external surface[J]. Nuclear Engineering and Design, 2013, 262: 201-208. doi: 10.1016/j.nucengdes.2013.05.002
    [11] 边浩志,孙中宁,丁铭,等. 含空气蒸汽冷凝换热特性的数值模拟分析[J]. 哈尔滨工程大学学报,2019, 40(2): 426-432.
    [12] 全标,边浩志,丁铭,等. 管束效应对含空气蒸汽冷凝传热影响数值分析[J]. 核动力工程,2019, 40(5): 61-66.
    [13] 杨世铭, 陶文铨. 传热学[M]. 第三版. 北京: 高等教育出版社, 1998:133-134.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  58
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-24
  • 修回日期:  2021-09-13
  • 刊出日期:  2022-08-04

目录

    /

    返回文章
    返回