高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

池式钠冷快堆热分层现象模型开发及瞬态分析

杜鹏 单建强 邓坚 刘余 丁书华 陈伟 袁鹏 吴增辉

杜鹏, 单建强, 邓坚, 刘余, 丁书华, 陈伟, 袁鹏, 吴增辉. 池式钠冷快堆热分层现象模型开发及瞬态分析[J]. 核动力工程, 2022, 43(4): 25-30. doi: 10.13832/j.jnpe.2022.04.0025
引用本文: 杜鹏, 单建强, 邓坚, 刘余, 丁书华, 陈伟, 袁鹏, 吴增辉. 池式钠冷快堆热分层现象模型开发及瞬态分析[J]. 核动力工程, 2022, 43(4): 25-30. doi: 10.13832/j.jnpe.2022.04.0025
Du Peng, Shan Jianqiang, Deng Jian, Liu Yu, Ding Shuhua, Chen Wei, Yuan Peng, Wu Zenghui. Model Development and Transient Analysis of Thermal Stratification Phenomenon in Pool-Type Sodium-Cooled Fast Reactors[J]. Nuclear Power Engineering, 2022, 43(4): 25-30. doi: 10.13832/j.jnpe.2022.04.0025
Citation: Du Peng, Shan Jianqiang, Deng Jian, Liu Yu, Ding Shuhua, Chen Wei, Yuan Peng, Wu Zenghui. Model Development and Transient Analysis of Thermal Stratification Phenomenon in Pool-Type Sodium-Cooled Fast Reactors[J]. Nuclear Power Engineering, 2022, 43(4): 25-30. doi: 10.13832/j.jnpe.2022.04.0025

池式钠冷快堆热分层现象模型开发及瞬态分析

doi: 10.13832/j.jnpe.2022.04.0025
详细信息
    作者简介:

    杜鹏(1993—),男,博士研究生,工程师,现主要从事反应堆热工水力与安全分析工作,E-mail: 852868695@qq.com

  • 中图分类号: TL331

Model Development and Transient Analysis of Thermal Stratification Phenomenon in Pool-Type Sodium-Cooled Fast Reactors

  • 摘要: 针对池式钠冷快堆特点,建立了三维系统分析模型,并结合热分层现象演化机制,提出了准确模拟热分层的关键处理方法,包括能量源项处理、三维动量方程对流项处理及三维空间进口效应处理。在此基础上,采用KALIMER及MONJU热分层实验对所开发的三维系统分析模型进行验证。结果表明模型有效解决了池式钠冷快堆三维热工水力分析的难题,实现了对钠池内温度场瞬态变化及热分层现象演化进程的快速准确模拟,同时也能够确定热分层过程中池式结构表面热应力最大位置,为池式快堆安全设计提供参考。

     

  • 图  1  三维交错动量网格划分

    Figure  1.  3D Staggered Momentum Meshing

    图  2  x-y平面上边界位置处x方向动量网格划分

    Figure  2.  Momentum Meshing in the x Direction at the Boundary Position on the x-y Plane

    图  3  一维-三维连接处网格划分示意图

    Figure  3.  Schematic Diagram of Meshing at 1D-3D Connection Positions

    图  4  KALIMER系统UTOP事故下热钠池温度分布变化

    Figure  4.  Variation of Temperature Distribution in Hot Sodium Pool under the UTOP Accident Conditions of the KALIMER System       

    图  5  上腔室围筒内壁轴向温度变化

    T*—归一化温度,T*=(T−Tc)/(Th−Tc);T—实际测点温度;Tc—冷钠温度;Th—热钠温度;t*—无量纲时间,t*=V/(Qt); V—钠容积(内围筒出口以下);Q—体积流速

    Figure  5.  Axial Temperature Change of Inner Wall of Upper Chamber Shroud

  • [1] MOCHIZUKI H, YAO H. Analysis of thermal stratification in the upper plenum of the “Monju” reactor[J]. Nuclear Engineering and Design, 2014, 270: 48-59. doi: 10.1016/j.nucengdes.2013.12.049
    [2] SHOKRI N, NAMIN M M, FARHOUDI J. A three-dimensional non-hydrostatic coupled model for free surface-subsurface variable-density flows[J]. Journal of Contaminant Hydrology, 2018, 216: 38-49. doi: 10.1016/j.jconhyd.2018.08.002
    [3] KIMURA N, HAYASHI K, KAMIDE H, et al. Experimental study on flow optimization in upper plenum of reactor vessel for a compact sodium-cooled fast reactor[J]. Nuclear Technology, 2005, 152(2): 210-222. doi: 10.13182/NT05-A3671
    [4] TANAKA N, MORIYA S, USHIJIMA S, et al. Prediction method for thermal stratification in a reactor vessel[J]. Nuclear Engineering and Design, 1990, 120(2-3): 395-402. doi: 10.1016/0029-5493(90)90389-F
    [5] 许义军. 中国实验快堆钠池三维热工水力分析[D]. 北京: 中国原子能科学研究院, 2003.
    [6] HOWARD P A, CARBAJO J J. Experimental study of scram transients in generalized liquid-metal fast breeder reactor outlet plenums[J]. Nuclear Technology, 1979, 44(2): 210-220. doi: 10.13182/NT79-A32256
    [7] AOKI T, OZAWA M. Thermal stratification study for the MONJU upper plenum code development and comparison with sodium experiment[C]//Proceedings of IAEA-IWGFR Specialists' Meeting on Thermal Stratification in Sodium. Grenoble: IAEA, 1983: 195-204.
    [8] 隋丹婷. 堆芯上腔三维化的池式快堆系统分析软件开发[D]. 北京: 华北电力大学, 2013.
    [9] CHEN J, ZHANG D, QIU S Z, et al. CFD investigation of thermal-hydraulic behaviors in full reactor core for sodium-cooled fast reactor[C]//Proceedings of the 2018 26th International Conference on Nuclear Engineering. London: ASME, 2018.
    [10] ALI M Y, WU G W, LIU S Y, et al. CFD analysis of thermal stratification under PLOFA transient in CLEAR-S[J]. Progress in Nuclear Energy, 2019, 115: 21-29. doi: 10.1016/j.pnucene.2019.03.011
    [11] VIVEK V, SHARMA A K, BALAJI C. A CFD based approach for thermal hydraulic design of main vessel cooling system of pool type fast reactors[J]. Annals of Nuclear Energy, 2013, 57: 269-279. doi: 10.1016/j.anucene.2013.01.059
    [12] NARCISI V, GIANNETTI F, SUBIOLI A, et al. RELAP5-3D three-dimensional analysis based on PHÉNIX dissymmetric transient test[J]. Journal of Nuclear Engineering and Radiation Science, 2020, 6(1): 011301. doi: 10.1115/1.4044847
    [13] 单建强. 压水堆核电厂瞬态安全数值分析方法[M]. 西安: 西安交通大学出版社, 2016: 179-180.
    [14] CHEN Q Y, XU W R. A zero-equation turbulence model for indoor airflow simulation[J]. Energy and Buildings, 1998, 28(2): 137-144. doi: 10.1016/S0378-7788(98)00020-6
    [15] LEE D Y, JIN J S, KANG B H. Momentum boundary layer and its influence on the convective heat transfer in porous media[J]. International Journal of Heat and Mass Transfer, 2002, 45(1): 229-233. doi: 10.1016/S0017-9310(01)00115-6
    [16] KWON Y M, LEE Y B, CHANG W P. Development of a system analysis code, SSC-K, for inherent safety evaluation of the Korea advanced liquid metal reactor[J]. Nuclear Engineering and Technology, 2001, 33(2): 209-224.
    [17] TAMAGNO P, VAN ROOIJEN W F G. Uncertainty analysis of the prototype FBR Monju with the JENDL-4.0 nuclear data set[J]. Annals of Nuclear Energy, 2013, 51: 257-273. doi: 10.1016/j.anucene.2012.06.039
  • 加载中
图(5)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  91
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-06
  • 修回日期:  2021-07-08
  • 刊出日期:  2022-08-04

目录

    /

    返回文章
    返回