高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

T-22合金在高温气冷堆非纯氦气中脱碳和氧化腐蚀行为研究

李昊翔 郑伟 银华强 杜斌 王秋豪 何学东 马涛 杨星团

李昊翔, 郑伟, 银华强, 杜斌, 王秋豪, 何学东, 马涛, 杨星团. T-22合金在高温气冷堆非纯氦气中脱碳和氧化腐蚀行为研究[J]. 核动力工程, 2022, 43(4): 38-45. doi: 10.13832/j.jnpe.2022.04.0038
引用本文: 李昊翔, 郑伟, 银华强, 杜斌, 王秋豪, 何学东, 马涛, 杨星团. T-22合金在高温气冷堆非纯氦气中脱碳和氧化腐蚀行为研究[J]. 核动力工程, 2022, 43(4): 38-45. doi: 10.13832/j.jnpe.2022.04.0038
Li Haoxiang, Zheng Wei, Yin Huaqiang, Du Bin, Wang Qiuhao, He Xuedong, Ma Tao, Yang Xingtuan. Study on Decarburization and Oxidation Corrosion Behavior of T-22 Alloy in Impure Helium of High-temperature Gas-cooled Reactor[J]. Nuclear Power Engineering, 2022, 43(4): 38-45. doi: 10.13832/j.jnpe.2022.04.0038
Citation: Li Haoxiang, Zheng Wei, Yin Huaqiang, Du Bin, Wang Qiuhao, He Xuedong, Ma Tao, Yang Xingtuan. Study on Decarburization and Oxidation Corrosion Behavior of T-22 Alloy in Impure Helium of High-temperature Gas-cooled Reactor[J]. Nuclear Power Engineering, 2022, 43(4): 38-45. doi: 10.13832/j.jnpe.2022.04.0038

T-22合金在高温气冷堆非纯氦气中脱碳和氧化腐蚀行为研究

doi: 10.13832/j.jnpe.2022.04.0038
基金项目: 国家自然科学基金(No.11875176);国家重大科技专项经费项目(No.ZX069)
详细信息
    作者简介:

    李昊翔(1996—),男,博士研究生,现主要从事高温堆内杂质腐蚀研究,E-mail: lhx961231@foxmail.com

    通讯作者:

    银华强,E-mail: yinhuaqiang@tsinghua.edu.cn

  • 中图分类号: TL341

Study on Decarburization and Oxidation Corrosion Behavior of T-22 Alloy in Impure Helium of High-temperature Gas-cooled Reactor

  • 摘要: 高温气冷堆的主冷却剂氦气中含有痕量杂质,其在高温环境下会与设备的合金材料发生反应从而造成材料腐蚀。在950℃、4种非纯氦气中开展高温气冷堆蒸汽发生器备选材料T-22合金的腐蚀试验,腐蚀时间为50 h,然后通过称重、扫描电镜、X射线能谱、电子探针显微分析仪以及碳硫分析仪对腐蚀后的T-22合金进行表征分析。研究表明,T-22合金在6种腐蚀情况下均未形成连续致密氧化层,合金内部均出现内氧化现象且均近乎发生完全脱碳,脱碳量达92.86%;腐蚀后的T-22合金的质量变化均很小,腐蚀50 h时合金已发生充分脱碳。

     

  • 图  1  T-22合金腐蚀后质量变化

    Figure  1.  Mass Change of T-22 Alloy after Corrosion

    图  2  T-22合金在He-3、He-3(预氧化)、He-4、He-4(预氧化)气氛下腐蚀后表面形貌

    Figure  2.  Surface Morphology of T-22 Alloy after Corrosion in He-3, He-3 (Preoxidation), He-4, He-4 (Preoxidation) Atmosphere

    图  3  T-22合金在He-3、He-3(预氧化)、He-4、He-4(预氧化)气氛下腐蚀后断面形貌

    Figure  3.  Cross Section Morphology of T-22 Alloy after Corrosion in He-3, He-3 (Preoxidation), He-4, He-4 (Preoxidation) Atmosphere

    图  4  T-22合金在He-2气氛下腐蚀后截面的Fe元素分布

    Figure  4.  Distribution of Fe in the Cross Section of T-22 Alloy after Corrosion in He-2 Atmosphere

    图  5  T-22合金在He-3、He-3(预氧化)气氛下腐蚀后截面的EDS元素图像

    Figure  5.  EDS Element Image of T-22 Alloy in the Cross Section after Corrosion in He-3 and He-3 (Preoxidation) Atmosphere

    图  6  T-22合金在He-4、He-4(预氧化)气氛下腐蚀后截面的EDS图像

    Figure  6.  EDS Image of T-22 Alloy in the Cross Section after Corrosion in He-4 and He-4 (Preoxidation) Atmosphere

    图  7  T-22合金在He-1、He-2气氛下腐蚀后截面的EDS元素图像

    Figure  7.  EDS Element Image of T-22 Alloy in the Cross Section after Corrosion in He-1, He-2 Atmosphere

    图  8  T-22合金在He-2气氛中腐蚀后Fe元素随深度分布

    红色线条—电子束照射位置;下同

    Figure  8.  Distribution of Fe with Depth after Corrosion of T-22 Alloy in He-2 Atmosphere

    图  9  T-22合金在He-3、He-3(预氧化)气氛下腐蚀后的EPMA图像

    Figure  9.  EPMA Image of T-22 Alloy after Corrosion in He-3 and He-3 (Preoxidation) Atmosphere

    图  10  T-22合金在He-4、He-4(预氧化)气氛下腐蚀后的EPMA图像

    Figure  10.  EPMA Image of T-22 Alloy after Corrosion in He-4 and He-4 (Preoxidation) Atmosphere

    图  11  T-22合金在He-1、He-2气氛中腐蚀后的EPMA图像    

    Figure  11.  EPMA Image of T-22 Alloy after Corrosion in He-1 and He-2 Atmosphere

    图  12  T-22合金腐蚀前后碳含量变化

    Figure  12.  Carbon Content Change of T-22 Alloy before and after Corrosion

    图  13  T-22合金在He-2气氛下腐蚀后碳含量变化

    Figure  13.  Carbon Content Change of T-22 Alloy after Corrosion in He-2 Atmosphere

    表  1  T-22合金主要元素含量 %

    Table  1.   Contents of Main Elements in T-22 Alloy

    元素CCrFeNiMnAlSiMoTi
    含量0.142.25Base0.45<0.051.00
      Base—合金基底元素;“−”—低于检测值,可认为含量为0
    下载: 导出CSV

    表  2  腐蚀试验气氛杂质的成分含量(Ptot=0.1 MPa) ppm

    Table  2.   Composition Content of Impurities in Corrosion Test Atmosphere (Ptot=0.1 MPa)

    气氛条件H2H2OCOCO2CH4O2
    He-161.00
    He-24900.834907020.58
    He-34901.52490702100.50
    He-44901.5257020.50
      Ptot—恒定试验压力
    下载: 导出CSV
  • [1] KUGELER K, ZHANG Z. Modular high-temperature gas cooled reactor power plant[M]. Beijing: Tsinghua University, 2019: 1-21.
    [2] ZHANG Z Y, WU Z X, WANG D Z, et al. Development strategy of high temperature gas cooled reactor in China[J]. Strategic Study of CAE, 2019, 21(1): 12-19.
    [3] ZIERMANN E. Review of 21 years of power operation at the AVR experimental nuclear power station in Jülich[J]. Nuclear Engineering and Design, 1990, 121(2): 135-142. doi: 10.1016/0029-5493(90)90098-I
    [4] QUADAKKERS W J. High temperature corrosion in the service environments of a nuclear process heat plant[J]. Materials Science and Engineering, 1987, 87: 107-112. doi: 10.1016/0025-5416(87)90366-1
    [5] FUJIKAWA S, HAYASHI H, NAKAZAWA T, et al. Achievement of reactor-outlet coolant temperature of 950℃ in HTTR[J]. Journal of Nuclear Science and Technology, 2004, 41(12): 1245-1254. doi: 10.1080/18811248.2004.9726354
    [6] PAN F, YAN Y F, XU B S, et al. Research on heat treatment of T22 steel high-pressure boiler pipe[J]. Steel Pipe, 2010, 39(1): 60-66.
    [7] MANNA G, CASTELLO P, HARSKAMP F, et al. Testing of welded 2.25CrMo steel, in hot, high-pressure hydrogen under creep conditions[J]. Engineering Fracture Mechanics, 2007, 74(6): 956-968. doi: 10.1016/j.engfracmech.2006.08.021
    [8] MORO L, GONZALEZ G, BRIZUELA G, et al. Influence of chromium and vanadium in the mechanical resistance of steels[J]. Materials Chemistry and Physics, 2008, 109(2-3): 212-216. doi: 10.1016/j.matchemphys.2007.11.030
    [9] LI J F, YU X B, DUAN H W, et al. Study on Localization of SA213 T-22 transfer heat tube for nuclear safety class one[J]. Hot Working Technology, 2016, 45(8): 82-84.
    [10] GU B S, LU Q, FU J Y, et al. Influence of oxidation temperature on the high-temperature oxide film forming behavior of T22 heat-exchange tubes[C]//The 2nd International Conference on Materials Science and Engineering Technology (MSET 2015). Shanghai: Shanghai Xiaoyu Culture Communication Co., Ltd., 2015: 72-78.
    [11] ZHENG W, LI H X, WANG Q H, et al. Oxidation behaviors of the high temperature alloys in the impure helium and argon[C]// International Conference on Nuclear Engineering. U.S. : American Society of Mechanical Engineers, 2021
    [12] LI H X, DU B, ZHENG W, et al. Corrosion behavior of superalloys in high temperature gas cooled reactor in impure helium with corrosion time[C]//International Conference on Nuclear Engineering. U.S. : American Society of Mechanical, 2021
    [13] 王秋豪,李昊翔,郑伟,等. 高温气冷堆冷却剂杂质对高温合金材料高温性能影响的研究模型分析[J]. 核技术,2020, 43(4): 37-42.
    [14] 朱江, 李智慧. 10 MW高温气冷堆一回路氦气品质研究[J]. 原子能科学技术,2010, 44(S1): 274-278. doi: 10.3969/j.issn.0258-0926.2005.01.011
    [15] 李昊翔, 郑伟, 银华强, 等. 高温堆非纯氦气中预氧化对3种高温合金的腐蚀行为影响研究[J/OL]. 原子能科学技术: 1-9. [2021-11-25]. http://kns.cnki.net/kcms/detail/11.2044.TL.20211112.1608.006.html.
    [16] 池成忠,贺志勇,高原,等. 表面渗铬T8钢中碳迁移的热力学分析[J]. 中国表面工程,2004, 17(4): 38-41. doi: 10.3321/j.issn:1007-9289.2004.04.010
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  69
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-18
  • 录用日期:  2022-01-11
  • 修回日期:  2021-10-21
  • 刊出日期:  2022-08-04

目录

    /

    返回文章
    返回