高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压水堆燃料辐照后燃料棒棒间距数据机器视觉测量方法研究

李伟才 刘鹏亮 王从政 郭严

李伟才, 刘鹏亮, 王从政, 郭严. 压水堆燃料辐照后燃料棒棒间距数据机器视觉测量方法研究[J]. 核动力工程, 2022, 43(4): 53-59. doi: 10.13832/j.jnpe.2022.04.0053
引用本文: 李伟才, 刘鹏亮, 王从政, 郭严. 压水堆燃料辐照后燃料棒棒间距数据机器视觉测量方法研究[J]. 核动力工程, 2022, 43(4): 53-59. doi: 10.13832/j.jnpe.2022.04.0053
Li Weicai, Liu Pengliang, Wang Congzheng, Guo Yan. Research on Machine Vision Measurement Method of Rod Spacing Data for PWR Fuel after Irradiation[J]. Nuclear Power Engineering, 2022, 43(4): 53-59. doi: 10.13832/j.jnpe.2022.04.0053
Citation: Li Weicai, Liu Pengliang, Wang Congzheng, Guo Yan. Research on Machine Vision Measurement Method of Rod Spacing Data for PWR Fuel after Irradiation[J]. Nuclear Power Engineering, 2022, 43(4): 53-59. doi: 10.13832/j.jnpe.2022.04.0053

压水堆燃料辐照后燃料棒棒间距数据机器视觉测量方法研究

doi: 10.13832/j.jnpe.2022.04.0053
详细信息
    作者简介:

    李伟才(1975—),男,高级工程师,现主要从事燃料组件设计及性能分析方面的研究,E-mail: liweicai@cgnpc.com.cn

  • 中图分类号: TL352.2+8

Research on Machine Vision Measurement Method of Rod Spacing Data for PWR Fuel after Irradiation

  • 摘要: 针对辐照后燃料棒棒间距数据获取和处理困难的问题,基于燃料棒几何特性及其在压水堆燃料组件中的排列方式,本文提出一种基于机器视觉的高效、可靠的燃料棒棒间距数据测量方法。该方法首先采用Retinex算法对水下燃料棒的采集图像进行增强预处理;然后,针对燃料棒阵列的前后成像干扰问题,采取边缘增强和逐行灰度特征处理方法实现待测燃料棒与背景燃料棒的有效分离,并进一步提升图像清晰度;最后,对燃料棒图像的单行灰度值进行二次曲线拟合,获得各个燃料棒的亚像素边缘点坐标。乏燃料组件的现场实验验证结果表明,该方法可一次性实现16个燃料棒棒间距测量,且测量精度达±0.32 mm,可为燃料性能分析提供高效、可靠的数据支持。

     

  • 图  1  压水堆燃料棒间距测量系统

    Figure  1.  Measuring System for Fuel Rod Spacing of PWR

    图  2  受环境干扰的核燃料棒图像

    Figure  2.  Images of Nuclear Fuel Rod Disturbed by Environment      

    图  3  Retinex算法原理图

    Figure  3.  Retinex Algorithm Diagram

    图  4  燃料组件中棒间距测量位置

    Figure  4.  Measurement Position of Rod Spacing in Fuel Assembly

    图  5  图像处理过程

    Figure  5.  Image Processing Process

    图  6  增强结果比较图

    Figure  6.  Comparison of Enhancement Results

    表  1  燃料棒间距测量数据 单位 :像素

    Table  1.   Fuel Rod Spacing Measurement Data

    测量截面间距左坐标间距右坐标间距(右−左)
    上部198.05215.4817.43
    中部194.64212.7518.11
    下部193.08209.9916.91
    下载: 导出CSV

    表  2  单视场燃料棒棒间距测量数据 mm

    Table  2.   Fuel Rod Spacing Measurement Data in Single View

    棒间距
    编号
    上部测量截面中部测量截面下部测量截面
    本文测量值高精度参考值差值本文测量值高精度参考值差值本文测量值高精度参考值差值
    13.053.000.053.173.010.162.963.00−0.04
    23.023.0203.203.020.183.113.020.09
    33.012.970.043.312.990.323.092.980.11
    42.773.05−0.282.853.08−0.233.043.08−0.04
    52.923.10−0.183.363.150.213.213.160.05
    63.183.20−0.023.333.200.133.163.21−0.05
    73.102.910.192.982.910.073.002.920.08
    83.293.33−0.043.233.33−0.103.053.340.29
    93.132.950.183.012.960.052.942.96−0.02
    103.163.27−0.113.163.27−0.113.003.26−0.26
    113.032.910.123.102.910.193.132.910.22
    123.093.11−0.023.033.12−0.092.973.11−0.14
    132.872.720.152.972.720.252.842.730.11
    143.203.36−0.163.133.37−0.243.143.37−0.23
    153.273.000.273.053.000.053.063.010.05
    163.153.110.043.413.120.293.273.120.15
    下载: 导出CSV
  • [1] DENG J X, DENG F. The setting of sipping test devices for irradiated fuel in nuclear power plant[J]. Journal of Energy and Power Engineering, 2002, 6(12): 1935-1939.
    [2] 任亮,李国云,江林志,等. 压水堆燃料组件池边检查技术研究进展[J]. 科技导报,2015, 33(18): 91-95. doi: 10.3981/j.issn.1000-7857.2015.18.015
    [3] 刘晓松. 破损燃料组件热室检查技术研究[J]. 核动力工程,2018, 39(4): 71-74.
    [4] 王从政. 基于水下耐辐照相机的燃料组件变形双目检测系统研究[D]. 成都: 电子科技大学, 2018: 4-9.
    [5] 王雄,杜代全,曾小康,等. VVER反应堆燃料组件流动传热特性CFD分析[J]. 核动力工程,2018, 39(3): 6-9.
    [6] 殷振国,王华才,刘歆粤,等. 燃料棒破损超声检测技术研究[J]. 原子能科学与技术,2015, 49(2): 324-329.
    [7] DUJON G F, PARKER A B, THOMAS A J. Visual image transmission by fibre optic cable: US, 5327514[P]. 1994-07-05.
    [8] 刘敬露,韩震宇. 核燃料组件变形测量系统的研制[J]. 计量与测试技术,2005, 32(11): 10-11,13. doi: 10.3969/j.issn.1004-6941.2005.11.004
    [9] 李建伟,何高魁,张向阳,等. 高能X射线CT技术在辐照后核燃料组件检测中的发展及应用[J]. 同位素,2020, 33(2): 124-132. doi: 10.7538/tws.2018.youxian.100
    [10] 李强,任宇宏,邹树梁,等. 基于LabVIEW的核燃料组件图像倾斜处理技术研究[J]. 机械工程与自动化,2019(1): 24-26+30. doi: 10.3969/j.issn.1672-6413.2019.01.009
    [11] 王从政,胡松,高椿明,等. 水下热扰动的光学成像失真问题研究[J]. 光电工程,2019, 46(10): 1-9.
    [12] 程曦,周国正,唐西明,等. 基于涡流技术的燃料棒氧化膜测量信号有效性评估与统计[J]. 核动力工程,2020, 41(1): 49-53.
    [13] 邹立,卢俊彦,胡易,等. 非均匀光照条件下的水下图像增强算法[J]. 山东科技大学学报(自然科学版),2020, 39(2): 118-125.
    [14] 林明星,代成刚,董雪,等. 水下图像处理技术研究综述[J]. 测控技术,2020, 39(8): 7-20.
    [15] LAND E H, MCCANN J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 1971, 61(1): 1-11. doi: 10.1364/JOSA.61.000001
    [16] 谢美华,王正明. 基于边缘定向增强的各向异性扩散抑噪方法[J]. 电子学报,2006, 34(1): 59-64. doi: 10.3321/j.issn:0372-2112.2006.01.012
    [17] 董鸿燕. 边缘检测的若干技术研究[D]. 长沙: 国防科学技术大学, 2008: 14-16.
    [18] GONZALEZ R C, WOODS R E. 数字图像处理[M]. 阮秋琦, 阮宇智, 译. 北京: 电子工业出版社, 2003: 87-92.
    [19] WU Z R, ROBINSON J. Edge-preserving colour-to-greyscale conversion[J]. IET Image Processing, 2014, 8(4): 252-260. doi: 10.1049/iet-ipr.2013.0348
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  85
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-06
  • 录用日期:  2022-01-26
  • 修回日期:  2021-09-24
  • 网络出版日期:  2022-08-11
  • 刊出日期:  2022-08-04

目录

    /

    返回文章
    返回