高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Adaboost算法的核电站故障诊断方法

李翔宇 程坤 谭思超 黄涛 袁东东

李翔宇, 程坤, 谭思超, 黄涛, 袁东东. 基于Adaboost算法的核电站故障诊断方法[J]. 核动力工程, 2022, 43(4): 118-125. doi: 10.13832/j.jnpe.2022.04.0118
引用本文: 李翔宇, 程坤, 谭思超, 黄涛, 袁东东. 基于Adaboost算法的核电站故障诊断方法[J]. 核动力工程, 2022, 43(4): 118-125. doi: 10.13832/j.jnpe.2022.04.0118
Li Xiangyu, Cheng Kun, Tan Sichao, Huang Tao, Yuan Dongdong. Fault Diagnosis Method of Nuclear Power Plant Based on Adaboost Algorithm[J]. Nuclear Power Engineering, 2022, 43(4): 118-125. doi: 10.13832/j.jnpe.2022.04.0118
Citation: Li Xiangyu, Cheng Kun, Tan Sichao, Huang Tao, Yuan Dongdong. Fault Diagnosis Method of Nuclear Power Plant Based on Adaboost Algorithm[J]. Nuclear Power Engineering, 2022, 43(4): 118-125. doi: 10.13832/j.jnpe.2022.04.0118

基于Adaboost算法的核电站故障诊断方法

doi: 10.13832/j.jnpe.2022.04.0118
基金项目: 核反应堆系统设计技术重点实验室基金(HT-WDZC-02-202000);中央高校基本科研业务费项目(3072020CFT2403)
详细信息
    作者简介:

    李翔宇(1990—),男,博士研究生,现主要从事核动力系统智能化方面的研究,E-mail: leonardomail@qq.com

    通讯作者:

    谭思超,E-mail: tansichao@ hrbeu.edu.cn

  • 中图分类号: TL363

Fault Diagnosis Method of Nuclear Power Plant Based on Adaboost Algorithm

  • 摘要: 针对当前基于集成学习的核电站故障诊断算法大多注重提高各种机器学习算法识别精度而忽略底层基学习器整合方法,导致集成学习算法识别事故类型精度难以提高,而且存在识别结果是否可信的问题。本文基于Adaboost算法设计了一种可使核电站控制系统自主识别故障类型的机器学习算法模型,该算法模型通过为集成学习的各种故障识别算法合理分配权重系数,提升集成学习整体算法对核电站事故类型的识别精度和算法可靠性。同时测试结果表明Adaboost算法对7种典型的核电站运行或事故工况的平均识别正确率可达95%以上;而且当事故发生150 s后,识别正确率可达100%。因此基于Adaboost算法的基学习器整合方法可用于优化集成学习的算法结构,提高算法对核电站事故类型的识别精度。

     

  • 图  1  6种事故工况反应堆热功率和电功率随时间变化曲线        

    Figure  1.  Changing Curve of Reactor Thermal Power and Electric Power with Time in Six Accident Conditions

    图  2  4种机器学习算法识别7种核电站运行工况的接收者操作特征曲线

    Figure  2.  The Receiver Operating Characteristic Curve of Each Operating Condition When Four Machine Learning Algorithms are Used to Identify Seven Operating Conditions of Nuclear Power Plant

    图  3  算法模型的AUC柱状图与识别所消耗的时间图

    Figure  3.  The AUC Histogram of the Algorithm Model and the Time Consumed for Identification

    图  4  Adaboost算法模型对于4种时间连续的瞬态运行参数对应运行工况的识别结果图

    Figure  4.  The Pictures of the Identification Results of Adaboost Algorithm Model for Four Kinds of Time Continuous Transient Operation Parameters Corresponding to the Operation Conditions

    图  5  Adaboost算法在各时刻对故障类型的识别精度曲线图      

    Figure  5.  The Curve Chart of Fault Type Identification Accuracy of Adaboost Algorithm at Each Time

    表  1  Adaboost算法对各种运行工况识别的混淆矩阵和精度表

    Table  1.   The Confusion Matrix and Precision Table of Adaboost Algorithm for Identification of Various Operating Conditions

    运行工况真正例假反例假正例真反例识别正确率/%
    工况18221780600097.45
    工况2766234116588495.00
    工况39138777592397.65
    工况477322768593295.79
    工况57372631599996.23
    工况67372656599496.12
    工况79227844595698.26
    下载: 导出CSV
  • [1] HOLMBERG J E, KAHLBOM U. Application of human reliability analysis in the deterministic safety analysis for nuclear power plants[J]. Reliability Engineering & System Safety, 2020, 194: 106371.
    [2] EEM S, CHOI I K, CHA S L, et al. Seismic response correlation coefficient for the structures, systems and components of the Korean nuclear power plant for seismic probabilistic safety assessment[J]. Annals of Nuclear Energy, 2021, 150: 107759. doi: 10.1016/j.anucene.2020.107759
    [3] CHOUDRI M Z. AP1000非能动安全壳冷却系统整合确定论与概率论安全分析[D]. 北京: 华北电力大学(北京), 2019.
    [4] 张力,王春波,邹衍华,等. 核电厂安全相关人员行为确定论筛选方法研究[J]. 安全与环境学报,2018, 18(5): 1854-1858.
    [5] 黄志超,初永越,李虎伟,等. 风险指引型PSA应用的不确定性分析方法研究[J]. 核科学与工程,2017, 37(5): 830-838. doi: 10.3969/j.issn.0258-0918.2017.05.019
    [6] SONG G S, KIM M C. Mathematical formulation and analytic solutions for uncertainty analysis in probabilistic safety assessment of nuclear power plants[J]. Energies, 2021, 14(4): 929. doi: 10.3390/en14040929
    [7] ČEPIN M. Application of shutdown probabilistic safety assessment[J]. Reliability Engineering & System Safety, 2018, 178: 147-155.
    [8] LEE H, JEONG H, KOO G, et al. Attention recurrent neural network-based severity estimation method for interturn short-circuit fault in permanent magnet synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 3445-3453. doi: 10.1109/TIE.2020.2978690
    [9] XING S B, LEI Y G, WANG S H, et al. Distribution-invariant deep belief network for intelligent fault diagnosis of machines under new working conditions[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2617-2625. doi: 10.1109/TIE.2020.2972461
    [10] LI J K, LIN M. Ensemble learning with diversified base models for fault diagnosis in nuclear power plants[J]. Annals of Nuclear Energy, 2021, 158: 108265. doi: 10.1016/j.anucene.2021.108265
    [11] ZHAO Y F, TONG J J, ZHANG L G. Rapid source term prediction in nuclear power plant accidents based on dynamic bayesian networks and probabilistic risk assessment[J]. Annals of Nuclear Energy, 2021, 158: 108217. doi: 10.1016/j.anucene.2021.108217
    [12] RÄTSCH G, ONODA T, MÜLLER K R. Soft margins for AdaBoost[J]. Machine Learning, 2001, 42(3): 287-320. doi: 10.1023/A:1007618119488
    [13] MERLER S, CAPRILE B, FURLANELLO C. Parallelizing AdaBoost by weights dynamics[J]. Computational Statistics & Data Analysis, 2007, 51(5): 2487-2498.
    [14] 艾鑫,刘永阔,蒋利平,等. 基于iForest-Adaboost的核电厂一回路故障诊断技术研究[J]. 核动力工程,2020, 41(3): 208-213.
    [15] SRA S, NOWOZIN S, WRIGHT S J. Optimization for machine learning[M]. Cambridge: MIT Press, 2012.
    [16] QI K L, LI Q, LIU W, et al. Qinshan 300MWe NPP full scope simulator upgrade[R]. Vienna: International Atomic Energy Agency, 2006.
    [17] FAN J, UPADHYE S, WORSTER A. Understanding receiver operating characteristic (ROC) curves[J]. Canadian Journal of Emergency Medicine, 2006, 8(1): 19-20. doi: 10.1017/S1481803500013336
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  110
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 修回日期:  2021-09-07
  • 刊出日期:  2022-08-04

目录

    /

    返回文章
    返回