高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于偏离效应核素筛选方法的水冷聚变堆源项计算

郭庆洋 张竞宇 张会杰 王庆斌

郭庆洋, 张竞宇, 张会杰, 王庆斌. 基于偏离效应核素筛选方法的水冷聚变堆源项计算[J]. 核动力工程, 2022, 43(5): 1-6. doi: 10.13832/j.jnpe.2022.05.0001
引用本文: 郭庆洋, 张竞宇, 张会杰, 王庆斌. 基于偏离效应核素筛选方法的水冷聚变堆源项计算[J]. 核动力工程, 2022, 43(5): 1-6. doi: 10.13832/j.jnpe.2022.05.0001
Guo Qingyang, Zhang Jingyu, Zhang Huijie, Wang Qingbin. Calculation of Source Terms for Water-cooled Fusion Reactor Based on Deviation Effect Nuclide Screening Method[J]. Nuclear Power Engineering, 2022, 43(5): 1-6. doi: 10.13832/j.jnpe.2022.05.0001
Citation: Guo Qingyang, Zhang Jingyu, Zhang Huijie, Wang Qingbin. Calculation of Source Terms for Water-cooled Fusion Reactor Based on Deviation Effect Nuclide Screening Method[J]. Nuclear Power Engineering, 2022, 43(5): 1-6. doi: 10.13832/j.jnpe.2022.05.0001

基于偏离效应核素筛选方法的水冷聚变堆源项计算

doi: 10.13832/j.jnpe.2022.05.0001
基金项目: 高能同步辐射光源国家重大科技基础设施项目[发改高技(2017)2173]
详细信息
    作者简介:

    郭庆洋(1991—),女,博士研究生,工程师,现从事辐射屏蔽计算研究,E-mail: gqy2171015@126.com

    通讯作者:

    张竞宇,E-mail: poptnt@163.com

  • 中图分类号: TL48

Calculation of Source Terms for Water-cooled Fusion Reactor Based on Deviation Effect Nuclide Screening Method

  • 摘要: 活化腐蚀产物是水冷聚变堆正常运行过程中主要的放射性源项,一般采用解析方法求解,但解析方法无法在满足精度要求的同时提高计算效率。本文提出一种基于定量化偏离效应分析的核素筛选方法,以放射性活度和剂量率2个参数定义偏离效应指标,通过分析偏离效应指标,筛选出满足接收准则的核素,以确定计算所需要的目标核素,这种分析方法既能满足精度需求,又能提高计算效率。将该核素筛选方法应用于国际热核聚变实验堆(ITER) 限制器-外包层水冷回路 (LIM-OBB)的活化腐蚀产物源项分析,并与此问题下的高精度基准解进行对比。结果表明,57Co、58Co、55Fe、51Cr等主要活化腐蚀产物核素的比活度计算结果相对于基准解的偏差均控制在1.5%以内;应用核素筛选方法后的计算效率相对于基准解的计算效率提高了279倍。

     

  • 图  1  核素筛选流程

    Figure  1.  Nuclide Screening Process

    表  1  LIM-OBB水冷回路的运行参数

    Table  1.   Operating Parameters of LIM-OBB Water Cooling Circuit

    参数名参数值
    辐照区流速/ (m·s−1)1~6
    非辐照区流速/(m·s−1)3~5
    辐照区温度/℃174
    非辐照区温度/℃140
    冷却剂密度/ (kg·m−3)9.10×102
    中子注量率/ (m−2·s−1)2.58×1017
    流经辐照区的时间/ s2
    流经非辐照区的时间/ s26
    过滤器流量/(kg·s−1)2.55
    过滤因子/ %50
    下载: 导出CSV

    表  2  LIM-OBB水冷回路中腐蚀产物及活化腐蚀产物的比活度计算结果

    Table  2.   Specific Activity Calculation Results of Specific Activity of Corrosion Products and Activated Corrosion Products in LIM-OBB Water Cooling Circuit

    腐蚀产物(CPs)总质量辐照区/kg非辐照区/kg冷却剂/kg
    氧化层沉积层氧化层沉积层离子微粒
    20.480.7129.091.456.42×10−34.48×10−3
    活化腐蚀产物总比活度辐照区/(Bq·m−2)非辐照区/(Bq·m−2)冷却剂/(Bq·m−3)
    氧化层沉积层氧化层沉积层离子微粒
    1.04×10126.06×10104.07×1052.85×10102.40×1097.01×109
    下载: 导出CSV

    表  3  LIM-OBB水冷回路中活化腐蚀产物主要核素的比活度

    Table  3.   Specific Activity of Main Nuclides of Activated Corrosion Products in LIM-OBB Water Cooling Circuit

    核素辐照区核素比活度/(Bq·m−2)非辐照区核素比活度/(Bq·m−2)冷却剂/(Bq·m−3)
    氧化层沉积层氧化层沉积层离子微粒
    53Fe1.57×10105.46×1087.54×10−15.63×1043.62×1079.96×107
    53Fem5.08×1091.77×1086.75×10−25.03×1031.17×1073.23×107
    55Fe1.98×10111.96×10102.11×1051.48×10104.57×1081.47×109
    59Fe4.19×1082.24×1071.30×1029.17×1069.67×1052.79×106
    57Co8.43×10107.27×1097.28×1045.07×1091.95×1086.08×108
    58Co5.18×10103.16×1092.35×1041.64×1091.20×1083.52×108
    58Com3.41×10101.19×1099.36×1016.98×1067.86×1072.16×108
    60Co8.96×1089.12×1079.91×1026.98×1072.06×1066.69×106
    60Com7.75×1092.70×1084.18×10−13.12×1041.78×1074.93×107
    57Ni2.15×10107.63×1082.38×1021.77×1074.97×1071.37×108
    63Ni3.61×1073.79×1064.16×1012.95×1068.33×1042.72×105
    51Cr3.47×10111.63×10106.93×1044.98×1098.01×1082.28×109
    55Cr1.88×1096.55×1073.43×10−22.56×1034.34×1061.19×107
    54Mn3.32×10102.93×1092.97×1042.07×1097.68×1072.41×108
    56Mn2.10×10117.33×1091.68×1021.25×1074.85×1081.34×109
    下载: 导出CSV

    表  4  基于核素筛选方法得到的活化腐蚀产物主要核素的比活度及相对于高精度基准解的相对偏差

    Table  4.   Specific Activity of Main Nuclides of Activated Corrosion Products Obtained Based on Nuclide Screening Method and Their Relative Deviation from High-precision Benchmark Solution

    核素辐照区非辐照区冷却剂
    氧化层沉积层氧化层沉积层离子微粒
    比活度/
    (Bq·m−2)
    相对偏
    差/%
    比活度/
    (Bq·m−2)
    相对偏
    差/%
    比活度/
    (Bq·m−2)
    相对偏
    差/%
    比活度/
    (Bq·m−2)
    相对偏
    差/%
    比活度/
    (Bq·m−3)
    相对偏
    差/%
    比活度/
    (Bq·m−3)
    相对偏
    差/%
    53Fe1.57×101005.47×108−0.187.54×10−105.63×10403.62×10709.96×1070
    53Fem5.08×10901.77×10806.75×10−205.04×103−0.201.17×10703.23×1070
    55Fe1.98×101101.95×10100.512.10×1050.471.47×10100.684.57×10801.47×1090
    59Fe4.19×10802.24×10701.30×10209.17×10609.67×10502.79×1060
    57Co8.43×101007.27×10907.30×104−0.275.05×1090.391.95×10806.08×1080
    58Co5.18×101003.17×109−0.322.35×10401.64×10901.20×10803.52×1080
    58Com3.41×101001.19×10909.36×10106.98×10607.86×10702.16×1080
    60Co8.94×1080.229.06×1070.669.89×1020.206.90×1071.152.06×10606.67×1060.30
    60Com7.75×10902.71×108−0.374.18×10−103.12×10401.79×107−0.564.93×1070
    57Ni2.15×101007.65×108−0.262.38×10201.77×10704.96×1070.201.37×1080
    63Ni3.60×1070.283.76×1060.794.15×1010.242.91×1061.368.31×1040.242.71×1050.37
    51Cr3.47×101101.63×101006.93×10404.98×10908.01×10802.28×1090
    55Cr1.88×10906.56×107−0.153.43×10−202.56×10304.34×10601.19×1070
    54Mn3.32×101002.93×10902.97×10402.06×1090.487.67×1070.132.41×1080
    56Mn2.10×101107.35×109−0.271.68×10201.25×10704.85×10801.34×1090
    下载: 导出CSV

    表  5  基于核素筛选方法的比活度计算结果和高精度基准解对比

    Table  5.   Comparison of Results Based on Nuclide Screening Method and High-precision Benchmark Solution

    核素种类活化腐蚀产物比活度计算时间
    辐照区/(Bq·m−2)非辐照区/(Bq·m−2)冷却剂/(Bq·m−3)
    氧化层沉积层氧化层沉积层离子微粒
    筛选后核素(数百种)1.04×10126.06×10104.07×1052.85×10102.40×1097.01×1094.5 min
    全部核素(数千种)1.11×10126.34×10104.12×1052.90×10102.56×1097.47×10921 h
    筛选后核素放射性贡献/%93.795.698.898.393.793.9
      “—”——无此项
    下载: 导出CSV
  • [1] 刘原中. 轻水堆一迥路中放射性核素浓度的计算方法及计算机程序[J]. 辐射防护,1986, 6(6): 409-424.
    [2] RAFIQUE M, MIRZA N M, MIRZA S M, et al. Review of computer codes for modeling corrosion product transport and activity build-up in light water reactors[J]. Nukleonika, 2010, 55(3): 263-269.
    [3] KANG S, SEJVAR J. CORA-II model of PWR corrosion-product transport[R]. Pittsburgh: Westinghouse Electric Corp, 1985: 11-169.
    [4] NISHIMURA T, KASAHARA K. Improvement of crud behavior evaluation code (ACE)[C]//Proceedings of 1998 JAIF International Conference on Water Chemistry in Nuclear Power Plants. Kashiwakazi: Japan Atomic Industrial Forum, 1998.
    [5] BESLU P, FREJAVILLE G, LALEX A. A computer code PACTOLE to predict activation and transport of corrosion products in a PWR[C]//Proceedings of an International Conference Organized by the British Nuclear Energy Society. Bournemouth: ICE, 1978.
    [6] DI PACE L, DACQUAIT F, SCHINDLER P, et al. Development of the PACTITER code and its application to safety analyses of ITER primary cooling water system[J]. Fusion Engineering and Design, 2007, 82(3): 237-247. doi: 10.1016/j.fusengdes.2006.11.002
    [7] LI L, ZHANG J Y, SONG W, et al. CATE: a code for activated corrosion products evaluation of water-cooled fusion reactor[J]. Fusion Engineering and Design, 2015, 100: 340-344. doi: 10.1016/j.fusengdes.2015.06.193
    [8] LI L, ZHANG J Y, HE S X, et al. The development of two-phase three-node model used to simulate the transport of ACPs[J]. Progress in Nuclear Energy, 2017, 97: 99-105. doi: 10.1016/j.pnucene.2016.12.015
    [9] ZHANG J Y, LI L, HE S X, et al. Development of a three-zone transport model for activated corrosion products analysis of Tokamak cooling water system[J]. Fusion Engineering and Design, 2016, 109-111: 407-410. doi: 10.1016/j.fusengdes.2016.02.091
    [10] 张竞宇,李璐,宋文,等. 水冷聚变堆活化腐蚀产物源项分析程序开发[J]. 原子能科学技术,2015, 49(S1): 68-74.
    [11] FORREST R A, KOPECKY J, SUBLET J C. The European activation file: EAF-2007 neutron-induced cross section library[R]. Abingdon: EURATOM/UKAEA Fusion Association, 2007: 19-21.
    [12] 郭庆洋,张竞宇,陈义学. 聚变堆水冷回路中多物相活化腐蚀产物计算分析[J]. 核技术,2019, 42(6): 060602. doi: 10.11889/j.0253-3219.2019.hjs.42.060602
    [13] GUO Q Y, ZHANG J Y, FANG S, et al. Activation analysis of coolant in a water-cooled loop of China fusion engineering test reactor[J]. Fusion Engineering and Design, 2018, 136: 694-698. doi: 10.1016/j.fusengdes.2018.03.059
    [14] HINDMARSH A C. Ordinary differential equation system solver[R]. Livermore: Lawrence Livermore National Laboratory, 1992.
    [15] RADHAKRISHNAN K, HINDMARSH AC. Description and use of LSODE, the Livermore solver for ordinary differential equations[R]. Washington: NASA, 1993.
    [16] KARDITSAS P J. Activation product transport using TRACT: ORE estimation of an ITER cooling loop[J]. Fusion Engineering and Design, 1999, 45(2): 169-185. doi: 10.1016/S0920-3796(99)00004-6
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  59
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-09
  • 修回日期:  2022-01-25
  • 网络出版日期:  2022-10-12
  • 刊出日期:  2022-10-12

目录

    /

    返回文章
    返回