Transient Characteristics Analysis of Single Parameter Disturbance in Molten Salt Reactor
-
摘要: 熔盐堆(MSR)作为一种新型的反应堆,其热工水力特性与其他堆型有很大差异,扰动瞬态分析有助于从根本上了解其安全特性和运行状态。为了研究MSR的运行瞬态特性,本研究以液态燃料MSR为研究对象,利用经过修改的RELAP5/ MOD4.0程序进行了稳态运行工况下的扰动瞬态分析。干扰变量包括反应性引入、一回路熔盐质量流量、二回路质量流量、空气散热器质量流量、空气散热器入口空气温度。分析了主要运行参数,如功率、堆芯进出口温度、二回路进出口温度、特征时间等。结果表明MSR在各种扰动瞬态下的最终状态都趋于稳定,而不存在严重的瞬态变化,这是对其固有稳定性特性的直观表征。根据功率和温度等变量在扰动下的变化,提出了功率和不同回路温度的控制方法。Abstract: As an innovative reactor, the thermal-hydraulic characteristics of molten salt reactor are very different from other reactors. Disturbance transient analysis helps to fundamentally understand its safety characteristics and operating conditions. In order to study the transient characteristics of molten salt reactor operation, this study takes liquid fuel molten salt reactor (MSR) as the research object, and uses the modified RELAP5/MOD4.0 program to carry out disturbance transient analysis under steady-state operation conditions. Disturbance variables include mass flow rate of primary circuit, mass flow rate of secondary circuit, mass flow rate of air radiator and inlet air temperature of air radiator. Main operating parameters, such as power, core inlet and outlet temperature, secondary circuit inlet and outlet temperature, and characteristic time, are analyzed. The results show that the final state of the MSR under various disturbance transients tends to be stable without severe transient changes, which is an intuitive characterization of its inherent stability characteristics. According to the change of power and temperature under disturbance, the control method of power and different circuit temperature is proposed.
-
Key words:
- Molten salt reactor(MSR) /
- Transient characteristics /
- RELAP5 /
- Disturbance
-
表 1 MSR主要设计参数
Table 1. Main Design Parameters of MSR
参数名 参数值 热功率/MW 10 设计寿命/a 10 堆芯活性区功率密度/(MW·m−3) 7.54 堆芯进口温度/℃ 630 堆芯出口温度/℃ 650 双熔盐换热器二次侧进口温度/℃ 560 双熔盐换热器二次侧出口温度/℃ 580 一回路燃料熔盐质量流量/(kg·s−1) 250 二回路冷却剂熔盐质量流量/(kg·s−1) 210 空气质量流量/(kg·s−1) 49.25 燃料盐温度系数/10−5℃−1 −5.9 慢化剂温度系数/10−5℃−1 −4.1 总温度系数/10−5℃−10 −10.2 表 2 MSR初始稳态计算值与设计值对比
Table 2. Comparison of Initial Steady State Calculated Value and Design Value of MSR
参数名 计算值 设计值 偏差/% 额定功率/MW 10.00 10 0 堆芯进口温度/℃ 630.26 630 0.04 堆芯出口温度/℃ 649.96 650 0.01 双熔盐换热器二次侧入口温度/℃ 561.57 560 0.28 双熔盐换热器二次侧出口温度/℃ 581.94 580 0.33 一回路熔盐质量流量/(kg·s−1) 255.60 250 2.24 二回路熔盐质量流量/(kg·s−1) 205.50 210 2.14 空气质量流量/(kg·s−1) 49.10 49.25 0.30 -
[1] ABRAM T, ION S. Generation-IV nuclear power: a review of the state of the science[J]. Energy Policy, 2008, 36(12): 4323-4330. doi: 10.1016/j.enpol.2008.09.059 [2] LEBLANC D. Molten salt reactors: a new beginning for an old idea[J]. Nuclear Engineering and Design, 2010, 240(6): 1644-1656. doi: 10.1016/j.nucengdes.2009.12.033 [3] BETTIS E S, SCHROEDER R W, CRISTY G A, et al. The aircraft reactor experiment—design and construction[J]. Nuclear Science and Engineering, 1957, 2(6): 804-825. doi: 10.13182/NSE57-A35495 [4] MACPHERSON H G. The molten salt reactor adventure[J]. Nuclear Science and Engineering, 1985, 90(4): 374-380. doi: 10.13182/NSE90-374 [5] 秋穗正,张大林,苏光辉,等. 新概念熔盐堆的固有安全性及相关关键问题研究[J]. 原子能科学技术,2009, 43(S1): 64-75. [6] MATHIEU L, HEUER D, BRISSOT R, et al. The thorium molten salt reactor: moving on from the MSBR[J]. Progress in Nuclear Energy, 2006, 48(7): 664-679. doi: 10.1016/j.pnucene.2006.07.005 [7] 蔡翔舟,戴志敏,徐洪杰. 钍基熔盐堆核能系统[J]. 物理,2016, 45(9): 578-590. doi: 10.7693/wl20160904 [8] FORSBERG C. The advanced high-temperature reactor: high-temperature fuel, liquid salt coolant, liquid-metal-reactor plant[J]. Progress in Nuclear Energy, 2005, 47(1-4): 32-43. doi: 10.1016/j.pnucene.2005.05.002 [9] SOHAL M S, EBNER M A, SABHARWALL P, et al. Engineering database of liquid salt thermophysical and thermochemical properties[R]. Idaho Falls: Idaho National Laboratory, 2010. [10] LI M H, ZHANG J, ZOU Y, et al. Disturbed transient analysis with stable operation mode of TMSR-SF1[C]//16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16). Chicago, 2015: 6959-6968 [11] MOCHIZUKI H. Neutronics and thermal-hydraulics coupling analysis using the FLUENT code and the RELAP5-3D code for a molten salt fast reactor[J]. Nuclear Engineering and Design, 2020, 368: 110793. doi: 10.1016/j.nucengdes.2020.110793 [12] 王成龙,田文喜,苏光辉,等. 熔盐堆新型非能动余热排出系统中高温热管的数值分析[J]. 核动力工程,2014, 35(1): 32-35. [13] YU Y, LIU D, SONG X M, et al. Research and development of a transient thermal–hydraulic code for system safety analysis of sodium cooled fast reactor[J]. Annals of Nuclear Energy, 2021, 152: 107841. doi: 10.1016/j.anucene.2020.107841 [14] SHEN C, ZHANG X L, WANG C, et al. Transient safety analysis of M2LFR-1000 reactor using ATHLET[J]. Nuclear Engineering and Technology, 2019, 51(1): 116-124. doi: 10.1016/j.net.2018.08.011 [15] 张洁,李明海,何龙,等. 1 GW固态燃料熔盐堆运行瞬态分析[J]. 核技术,2016, 39(10): 89-94. [16] 阮见. 熔盐堆系统瞬态分析程序开发[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2018. [17] SLOAN S M, SCHULTZ R R, WILSON G E. RELAP5/MOD3 code manual[J]. Nureg/cr Egg, 1998 [18] 程懋松, 施承斌. RELAP5-TMSR-Ver: 1.2. 0修改说明书[R]. 中国科学院先进核能创新研究院, 2017 [19] 施承斌,程懋松,刘桂民. RELAP5应用于液态燃料熔盐堆的扩展及验证[J]. 核动力工程,2016, 37(3): 16-20. doi: 10.13832/j.jnpe.2016.03.0016 [20] 姜淑颖,程懋松,戴志敏,等. RELAP/SCDAPSIM/MOD4.0程序的FHR应用扩展及验证[J]. 核动力工程,2016, 37(6): 33-36. doi: 10.13832/j.jnpe.2016.06.0033 [21] SHI C B, CHENG M S, LIU G M. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code[J]. Nuclear Engineering and Design, 2016, 305: 378-388. doi: 10.1016/j.nucengdes.2016.05.034