Analysis and Research of Coupled Brayton Cycle System for Small Fluorine Salt Cooled High Temperature Reactor
-
摘要: 为满足小型氟盐冷却高温堆(FHR)能量转换需求,开发与之匹配的高效、紧凑、无水冷却动力转换系统,本文对比了超临界二氧化碳(SCO2)、空气、氩气(Ar)、氮气(N2)、氙气(Xe)5种气体工质在不同布雷顿循环构型中的热电转换效率、㶲效率、㶲损失分布。研究发现,SCO2布雷顿循环相比其它工质循环具有最高的热电转换效率和㶲效率,且结构更为紧凑,易于小型化和模块化,与小型氟盐冷却高温堆耦合更具优势;进而对SCO2布雷顿循环进行构型优化,得出匹配小型氟盐冷却高温堆的最佳循环构型方式,构成固有安全模块化小型氟盐冷却高温堆热电转换系统,为西部能源利用提供新研究思路。
-
关键词:
- 小型氟盐冷却高温堆(FHR) /
- 布雷顿循环 /
- 超临界二氧化碳(SCO2) /
- 㶲分析
Abstract: In order to meet the energy conversion requirements of small fluoride cooled high temperature reactor (FHR), an efficient, compact and water-free cooling power conversion system is developed. In this paper, the thermoelectric conversion efficiency, exergy efficiency and exergy loss distribution of supercritical carbon dioxide (SCO2), air, argon (Ar), nitrogen (N2) and xenon (Xe) in different Brayton cycle configurations are compared. It is found that SCO2 Brayton cycle has the highest thermoelectric conversion efficiency and exergy efficiency compared with other working medium cycles, and its structure is more compact, easy to miniaturization and modularization, and has more advantages in coupling with small fluorine salt cooled high temperature reactor; the configuration of SCO2 Brayton cycle is optimized, and the optimal cycle configuration mode matching the small fluoride cooled high-temperature reactor is obtained, which constitutes an inherently safe modular small fluoride cooled high-temperature reactor thermoelectric conversion system, providing a new research idea for energy utilization in the west. -
表 1 能量平衡与㶲平衡关系式
Table 1. Energy Balance and Exergy Balance Relationship
部件 能量平衡 㶲损失 堆芯 $ {Q_{{\text{core}}}} = 125{\text{ MW}} $ $ {\dot I _{{\text{core}}}} = {\dot E _{10}} - {\dot E _9} + {\dot E _{{\text{core}}}} $ 中间换热器 $ {Q_{{\text{INH}}}} = \left( {{h_8} - {h_1}} \right){m_1} $ $ {\dot I _{{\text{INH}}}} = {\dot E _8} + {\dot E _9} - {\dot E _1} - {\dot E _{10}} $ 涡轮机 $ {W_{{\text{TU}}}} = \left( {{h_1} - {h_2}} \right){m_1} $ $ {\dot I _{{\text{TU}}}} = {\dot E _1} - {\dot E _2} - {\dot W _{{\text{TU}}}} $ 高温回热器 $ {W_{{\text{HTR}}}} = \left( {{h_2} - {h_3}} \right){m_2} = \left( {{h_{7a}} - {h_8}} \right){m_{7{\text{a}}}} $ $ {\dot I _{{\text{HTR}}}} = {\dot E _{{\text{7a}}}} + {\dot E _2} - {\dot E _3} - {\dot E _8} $ 低温回热器 $ {W_{{\text{LTR}}}} = \left( {{h_3} - {h_2}} \right){m_3} = \left( {{h_{{\text{7b}}}} - {h_6}} \right){m_6} $ $ {\dot I _{{\text{LTR}}}} = {\dot E _3} + {\dot E _6} - {\dot E _4} - {\dot E _{7{\text{b}}}} $ 主压缩机 $ {W_{{\text{MC}}}} = \left( {{h_6} - {h_5}} \right){m_5} $ $ {\dot I _{{\text{MC}}}} = {\dot E _5} - {\dot E _6} - {\dot W _{{\text{MC}}}} $ 再压缩机 $ {W_{{\text{RC}}}} = \left( {{h_7} - {h_4}} \right){m_7} $ $ {\dot I _{{\text{RC}}}} = {\dot E _4} - {\dot E _7} - {\dot W _{{\text{RC}}}} $ 冷却器 $ {Q_{{\text{cooler}}}} = \left( {{h_4} - {h_5}} \right){m_5} $ $ {\dot I _{{\text{cooler}}}} = {\dot E _{11}} + {\dot E _4} - {\dot E _{12}} - {\dot E _5} $ 注:下标数字对应系统进出口点;下标INH表示中间换热器;HTR表示高温回热器;LTR表示低温回热器;cooler表示冷却器 表 2 循环参数设置
Table 2. Cycle Parameter Settings
参数 数值 堆芯热功率/MW 125 堆芯入口温度/℃ 650 堆芯出口温度/℃ 700 循环最高温度/℃ 690 环境温度/℃ 15 换热器压降/kPa 1%pin 压气机等熵效率/% 83 涡轮机等熵效率/% 87 换热器端差/℃ 10 发电机效率/% 98 表 3 5种工质在简单回热循环中的㶲损失分布 %
Table 3. Exergy Loss Distribution of Five Working Mediums in a Simple Regenerative Cycle
工质
种类SCO2 空气 N2 Ar Xe 中间
换热器15.78 6.38 6.43 7.32 16.07 涡轮机 25.96 31.16 30.72 29.83 26.13 回热器 33.34 10.02 10.36 11.61 16.07 压缩机 5.60 21.14 21.26 20.72 11.78 冷却器 16.80 29.52 29.47 28.76 27.85 堆芯 2.54 1.79 1.76 1.76 2.11 表 4 5种工质在再压缩循环中的㶲损失分布 %
Table 4. Exergy Loss Distribution of Five Working Mediums in a Recompression Cycle
工质
种类SCO2 空气 N2 Ar Xe 中间
换热器13.17 6.08 6.76 7.12 9.51 涡轮机 42.32 29.57 29.33 28.82 30.83 高温回热器 11.60 5.24 4.12 5.47 11.81 低温回热器 5.96 5.58 5.11 5.96 7.22 主压缩机 6.27 20.95 20.93 20.2 9.62 再压缩机 8.46 0.68 0.66 0.99 5.90 冷却器 9.09 30.24 31.47 29.81 22.96 堆芯 3.13 1.66 1.62 1.63 2.15 -
[1] DELPECH S. Molten salts for nuclear applications[M]//LANTELME F, GROULT H. Molten Salts Chemistry. Amsterdam: Elsevier, 2013: 497-520. [2] INGERSOLL D T. Status of preconceptual design of the advanced high-temperature reactor (AHTR), ORNL/TM-2004/104 TRN: US0604044 [R]. Oak Ridge: Oak Ridge National Lab, 2004. [3] BARDET P, BLANDFORD E, FRATONI M, et al. Design, analysis and development of the modular PB-AHTR[C]//International Conference on Advances in Nuclear Power Plants. Anaheim: ICAPP, 2008: 161-178. [4] GREENE S R, GEHIN J C, HOLCOMB D E, et al. Pre-conceptual design of a fluoride-salt-cooled small modular advanced high-temperature reactor (SmAHTR), ORNL/TM-2010/199 [R]. Oak Ridge: Oak Ridge National Laboratory, 2010. [5] ILAS D, HOLCOMB D E, GEHIN J. SmAHTR-CTC neutronic design, 1159410 [R]. Oak Ridge: Oak Ridge National Lab, 2014. [6] 阮见,邹杨,李明海,等. 氟盐冷却高温堆空气布雷顿循环系统瞬态行为研究[J]. 核动力工程,2017, 38(4): 22-26. doi: 10.13832/j.jnpe.2017.04.0022 [7] 秦浩,王成龙,张大林,等. 氟盐冷却高温堆氚输运特性数值研究[J]. 原子能科学技术,2018, 52(3): 434-440. doi: 10.7538/yzk.2017.youxian.0290 [8] 李友荣, 吴双应, 肖兰, 等. 热经济学理论及应用[M]. 北京: 科学出版社, 2020 [9] 刘秀婷,张昊春,尹德状,等. 基于SCO2布雷顿循环的双模式核热推进系统性能分析[J]. 核动力工程,2020, 41(S2): 102-107. doi: 10.13832/j.jnpe.2020.S2.0102