高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氟利昂CHF数据对压水堆工况下LUT-2006过冷CHF预测能力的评估

郭俊良 孔焕俊 桂淼 彭玉姣 单建强

郭俊良, 孔焕俊, 桂淼, 彭玉姣, 单建强. 氟利昂CHF数据对压水堆工况下LUT-2006过冷CHF预测能力的评估[J]. 核动力工程, 2022, 43(5): 27-33. doi: 10.13832/j.jnpe.2022.05.0027
引用本文: 郭俊良, 孔焕俊, 桂淼, 彭玉姣, 单建强. 氟利昂CHF数据对压水堆工况下LUT-2006过冷CHF预测能力的评估[J]. 核动力工程, 2022, 43(5): 27-33. doi: 10.13832/j.jnpe.2022.05.0027
Guo Junliang, Kong Huanjun, Gui Miao, Peng Yujiao, Shan Jianqiang. Assessment of LUT-2006 Subcooled CHF Prediction at PWR Conditions with Freon CHF Data[J]. Nuclear Power Engineering, 2022, 43(5): 27-33. doi: 10.13832/j.jnpe.2022.05.0027
Citation: Guo Junliang, Kong Huanjun, Gui Miao, Peng Yujiao, Shan Jianqiang. Assessment of LUT-2006 Subcooled CHF Prediction at PWR Conditions with Freon CHF Data[J]. Nuclear Power Engineering, 2022, 43(5): 27-33. doi: 10.13832/j.jnpe.2022.05.0027

氟利昂CHF数据对压水堆工况下LUT-2006过冷CHF预测能力的评估

doi: 10.13832/j.jnpe.2022.05.0027
基金项目: 科技部国家重点研发计划项目(2018FY1900403)
详细信息
    作者简介:

    郭俊良(1996—),男,博士研究生,现主要从事反应堆热工水力研究,E-mail: 1048369463@qq.com

  • 中图分类号: TL334

Assessment of LUT-2006 Subcooled CHF Prediction at PWR Conditions with Freon CHF Data

  • 摘要: 以R-134a为模化工质,在内径为8 mm的圆管中进行了临界热流密度(CHF)实验研究。讨论了R-134a的CHF参数变化趋势,评价了Katto的流体模化方法。结果表明,CHF仅受局部参数影响,长径比的影响可以忽略。R-134a的CHF参数趋势与典型水的CHF参数趋势相似。Katto的模化方法在低临界含气率甚至是负临界含气率下都有很高的精度。将R-134a的CHF实验数据通过模化方法转换成等效水数据,并与CHF查询表(LUT)-2006进行了比较。评价结果表明,即使在几乎没有过冷CHF数据的压水堆工况,LUT-2006仍具有很高的预测精度。

     

  • 图  1  氟利昂CHF回路示意图

    P—压力测点;T—温度测点;DP—压差测点

    Figure  1.  Schematic Diagram of Freon CHF Loop

    图  2  不同加热长度下临界含气率xcr与CHF的关系

    Figure  2.  Relationship between Critical Air Content and CHF under Different Heating Lengths

    图  3  不同压力P和质量流速G下临界含气率与CHF的关系

    Figure  3.  Relationship between Critical Air Content and CHF at Different Pressures and Mass Flow Rates

    图  4  不同压力P和质量流速G下R-134a数据与水数据的比较

    Figure  4.  Comparison of R-134a Data with Water Data at different Pressures and Mass Flow Rates

    图  5  预测值与实验值

    Figure  5.  Predicted and Experimental Values

    图  6  各参数预测值与实验值之比

    Figure  6.  Ratio of Predicted and Experimental Values of Each Parameter

    表  1  实验段参数

    Table  1.   Test Section Parameter

    内径/mm壁厚/mm总长/m加热长度/m材质
    811.60.24~1.60316 不锈钢
    下载: 导出CSV

    表  2  实验工况

    Table  2.   Experimental Conditions

    参数R-134a
    压力/MPa1.27~2.707.85~15.70
    质量流速/ (kg·m−2·s−1)1090~35501500~5000
    进口温度/℃20~60
      “—”—无数据
    下载: 导出CSV

    表  3  实验不确定度分析

    Table  3.   Experiment Uncertainty Analysis

    参数不确定度/%
    长度/直径/壁厚±0.1/±0.5/±3.0
    压力±0.7
    温度±1.3
    质量流速±1.7
    电压±0.2
    电流±0.2
    功率±2.2
    热流密度±5.1
    下载: 导出CSV

    表  4  Katto模化方法

    Table  4.   Katto’s Fluid-to-fluid Modeling Method

    类型无量纲数
    几何相似$ {\left( {\dfrac{L}{D}} \right)_{\text{R}}} = {\left( {\dfrac{L}{D}} \right)_{\text{w}}} $
    水力学相似$ {\left( {\dfrac{{{\rho _{\text{l}}}}}{{{\rho _{\text{g}}}}}} \right)_{\text{R}}} = {\left( {\dfrac{{{\rho _{\text{l}}}}}{{{\rho _{\text{g}}}}}} \right)_{\text{w}}} $
    热力学相似$ {\left( {\dfrac{{\Delta h}}{{{h_{{\text{fg}}}}}}} \right)_{\text{R}}} = {\left( {\dfrac{{\Delta h}}{{{h_{{\text{fg}}}}}}} \right)_{\text{w}}} 或 {\left( {{x_{{\text{cr}}}}} \right)_{\text{R}}} = {\left( {{x_{{\text{cr}}}}} \right)_{\text{w}}} $
    We相同$ W{e_{\text{R}}} = W{e_{\text{w}}} $
      R—R-134a;w—水;We—韦伯数,$ We = {{\left( {G\sqrt D } \right)} \mathord{\left/ {\vphantom {{\left( {G\sqrt D } \right)} {\sqrt {{\rho _{\text{l}}}\sigma } }}} \right. } {\sqrt {{\rho _{\text{l}}}\sigma } }} $
    下载: 导出CSV

    表  5  压水堆工况下过冷氟利昂CHF数据库

    Table  5.   Subcooled Freon CHF Database under PWR Condition

    来源工质L/mP/MPaG/[kg·(m2·s)−1]xcr数据点个数
    Cheng [19]R-120.6881.03~3.05990~4230−0.291~−0.001161
    Doerffer[20]R-134a1.61.573980−0.0107~−0.00987
    Katto[21]R-120.41.472040~3060−0.0396~−0.00394
    本文R-134a0.24~1.61.27~2.721080~3590−0.294~−0.0020325
    下载: 导出CSV
  • [1] KATTO Y, OHNO H. An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes[J]. International Journal of Heat and Mass Transfer, 1984, 27(9): 1641-1648. doi: 10.1016/0017-9310(84)90276-X
    [2] BOWRING R W. Simple but accurate round tube, uniform heat flux, dryout correlation over the pressure range 0.7 to 17 MN/m2 (100 to 2500 psia), AEEW-R-789[R]. Winfrith: Atomic Energy Establishment, 1972.
    [3] HALL D D, MUDAWAR I. Critical heat flux (CHF) for water flow in tubes—II. : subcooled CHF correlations[J]. International Journal of Heat and Mass Transfer, 2000, 43(14): 2605-2640. doi: 10.1016/S0017-9310(99)00192-1
    [4] SHAH M M. A generalized graphical method for predicting chf in uniformly heated vertical tubes[J]. International Journal of Heat and Mass Transfer, 1979, 22(4): 557-568. doi: 10.1016/0017-9310(79)90059-0
    [5] LEE C H, MUDAWWAR I. A mechanistic critical heat flux model for subcooled flow boiling based on local bulk flow conditions[J]. International Journal of Multiphase Flow, 1988, 14(6): 711-728. doi: 10.1016/0301-9322(88)90070-5
    [6] HARAMURA Y, KATTO Y. A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids[J]. International Journal of Heat and Mass Transfer, 1983, 26(3): 389-399. doi: 10.1016/0017-9310(83)90043-1
    [7] WEISMAN J, PEI B S. Prediction of critical heat flux in flow boiling at low qualities[J]. International Journal of Heat and Mass Transfer, 1983, 26(10): 1463-1477. doi: 10.1016/S0017-9310(83)80047-7
    [8] LEVY S, HEALZER J M, ABDOLLAHIAN D. Prediction of critical heat flux in vertical pipe flow[J]. Nuclear Engineering and Design, 1981, 65(1): 131-140. doi: 10.1016/0029-5493(81)90126-6
    [9] GROENEVELD D C, SHAN J Q, VASIĆ A Z, et al. The 2006 CHF look-up table[J]. Nuclear Engineering and Design, 2007, 237(15-17): 1909-1922. doi: 10.1016/j.nucengdes.2007.02.014
    [10] TONG L S. Thermal analysis of pressurized water reactors[J]. Nuclear Science and Engineering, 1972, 48(2): 233. doi: 10.13182/NSE72-A22480
    [11] MOTLEY F E, HILL K W, CADEK F F, et al. New Westinghouse correlation WRB-1 for predicting critical heat flux in rod bundles with mixing vane grids: WCAP-8763[R]. Pittsburgh: Westinghouse Electric Corp. , 1976.
    [12] STEVENS G F. A quantitative comparison between burnout data for water at 1000lb/in2 and freon 12 at 155lb/in2 uniformly heated round tubes vertical upwards: AEWW-R-327[R]. Winfrith: Atomic Energy Establishment, 1964.
    [13] AHMAD S Y. Fluid to fluid modeling of critical heat flux: a compensated distortion model[J]. International Journal of Heat and Mass Transfer, 1973, 16(3): 641-662. doi: 10.1016/0017-9310(73)90229-9
    [14] KATTO Y. A generalized correlation of critical heat flux for the forced convection boiling in vertical uniformly heated round tubes—a supplementary report[J]. International Journal of Heat and Mass Transfer, 1979, 22(6): 783-794. doi: 10.1016/0017-9310(79)90017-6
    [15] PIORO I L, GROENEVELD D C, CHENG S C, et al. Comparison of CHF measurements in R-134a cooled tubes and the water CHF look-up table[J]. International Journal of Heat and Mass Transfer, 2001, 44(1): 73-88. doi: 10.1016/S0017-9310(00)00093-4
    [16] CHUN S Y, HONG S D, CHO Y S, et al. Comparison of the CHF data for water and refrigerant HFC-134a by using the fluid-to-fluid modeling methods[J]. International Journal of Heat and Mass Transfer, 2007, 50(21-22): 4446-4456. doi: 10.1016/j.ijheatmasstransfer.2005.06.039
    [17] TAIN R M, CHENG S C, GROENEVELD D C. Critical heat flux measurements in a round tube for CFCs and CFC alternatives[J]. International Journal of Heat and Mass Transfer, 1993, 36(8): 3039-2049. doi: 10.1016/S0017-9310(05)80135-8
    [18] AKHTAR S W, MOON S K, CHUN S Y, et al. Modeling capability of R134a for a critical heat flux of water in a vertical 5 × 5 rod bundle geometry[J]. International Journal of Heat and Mass Transfer, 2006, 49(7-8): 1299-1309. doi: 10.1016/j.ijheatmasstransfer.2005.10.019
    [19] CHENG X. Experimental investigations on critical heat flux in 8 mm tubes and in 7-rod bundles: KfK-Report 4884[R]. German: Research Center Karlsruhe, 1991. (in German)
    [20] DOERFFER S, GROENEVELD D C, CHENG S C. A comparison of critical heat flux in tubes and bilaterally heated annuli[J]. Nuclear Engineering and Design, 1997, 177(1-3): 105-120. doi: 10.1016/S0029-5493(97)00188-X
    [21] KATTO Y, YOKOYA S, MIAKE S, et al. Critical heat flux on a uniformly heated cylinder in a cross flow of saturated liquid over a very wide range of vapor-to-liquid density ratio[J]. International Journal of Heat and Mass Transfer, 1987, 30(9): 1971-1977. doi: 10.1016/0017-9310(87)90255-9
    [22] GROENEVELD D C. On the definition of critical heat flux margin[J]. Nuclear Engineering and Design, 1996, 163(1-2): 245-247. doi: 10.1016/0029-5493(95)01173-0
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  119
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 录用日期:  2022-03-08
  • 修回日期:  2021-12-22
  • 刊出日期:  2022-10-12

目录

    /

    返回文章
    返回