高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常压下ATF锆合金包壳Cr涂层表面饱和池式沸腾气泡行为实验研究

文青龙 曾谢虎 杜强 陈志强 张瑞谦 杜沛南

文青龙, 曾谢虎, 杜强, 陈志强, 张瑞谦, 杜沛南. 常压下ATF锆合金包壳Cr涂层表面饱和池式沸腾气泡行为实验研究[J]. 核动力工程, 2022, 43(5): 34-42. doi: 10.13832/j.jnpe.2022.05.0034
引用本文: 文青龙, 曾谢虎, 杜强, 陈志强, 张瑞谦, 杜沛南. 常压下ATF锆合金包壳Cr涂层表面饱和池式沸腾气泡行为实验研究[J]. 核动力工程, 2022, 43(5): 34-42. doi: 10.13832/j.jnpe.2022.05.0034
Wen Qinglong, Zeng Xiehu, Du Qiang, Chen Zhiqiang, Zhang Ruiqian, Du Peinan. Experimental Study on Saturated Pool Boiling Bubble Behavior of ATF Chromium Coated Zirconium Alloy Cladding at Atmospheric Pressure[J]. Nuclear Power Engineering, 2022, 43(5): 34-42. doi: 10.13832/j.jnpe.2022.05.0034
Citation: Wen Qinglong, Zeng Xiehu, Du Qiang, Chen Zhiqiang, Zhang Ruiqian, Du Peinan. Experimental Study on Saturated Pool Boiling Bubble Behavior of ATF Chromium Coated Zirconium Alloy Cladding at Atmospheric Pressure[J]. Nuclear Power Engineering, 2022, 43(5): 34-42. doi: 10.13832/j.jnpe.2022.05.0034

常压下ATF锆合金包壳Cr涂层表面饱和池式沸腾气泡行为实验研究

doi: 10.13832/j.jnpe.2022.05.0034
详细信息
    作者简介:

    文青龙(1979—),男,博士,副教授,现主要从事先进核能系统热工水力和安全研究,E-mail: qlwen@cqu.edu.cn

  • 中图分类号: TL334

Experimental Study on Saturated Pool Boiling Bubble Behavior of ATF Chromium Coated Zirconium Alloy Cladding at Atmospheric Pressure

  • 摘要: 铬(Cr)涂层锆合金包壳是最有前途的耐事故燃料(ATF)的新型包覆材料之一,对其表面的气泡动力学进行研究有助于评估是否具有更好的传热性能。在常压下的Cr涂层锆合金包壳池式沸腾实验装置中对不同工艺方法下制备的Cr涂层锆合金包壳进行实验,研究了粗糙度等表面状态对气泡产生、长大以及脱离等气泡行为的影响。结果表明,气泡接触角与Cr涂层表面粗糙度有关,粗糙度越大,表面气泡接触角越小;不同涂层工艺下制备的4种Cr涂层锆合金包壳样件表面的气泡脱离直径范围为1.256 ~1.446 mm,气泡脱离频率范围为29.99 ~50.97 Hz;气泡脱离直径与粗糙度呈负相关,脱离频率与粗糙度呈正相关;气泡脱离直径预测模型与实验数据之间的偏差为±6%,脱离频率预测模型与实验数据之间的偏差为±3%。

     

  • 图  1  池式沸腾实验装置

    Figure  1.  Pool Boiling Experimental Facility

    图  2  实验段示意图

    Figure  2.  Schematic Diagram of Experimental Section

    图  3  气-液边界识别

    Figure  3.  Vapor-liquid Boundary Identification

    图  4  汽泡边界法向量

    Figure  4.  Normal Vector of Bubble Boundary

    图  5  Cr涂层锆合金包壳外表面微观形貌图

    Figure  5.  Microscopic Topography of the Outer Surface of Cr-coated Zirconium Alloy Cladding

    图  6  气泡接触角原始图像

    Figure  6.  Original Image of Bubble Contact Angle

    图  7  气泡接触角处理结果

    Figure  7.  Processing Results of Bubble Contact Angle

    图  8  气泡接触角随表面粗糙度变化情况

    Figure  8.  Variation of Bubble Contact Angle with Surface Roughness        

    图  9  气泡脱离包壳表面

    Figure  9.  Bubbles Departure from the Cladding Surface

    图  10  气泡脱离直径随表面粗糙度变化情况

    Figure  10.  Variation of Bubble Departure Diameter with Surface Roughness

    图  11  气泡脱离直径随接触角变化情况

    Figure  11.  Variation of Bubble Departure Diameter with Contact Angle

    图  12  气泡脱离直径拟合关联式与实验数据对比

    Figure  12.  Comparison of Bubble Departure Diameter Fitting Correlation with Experimental Data

    图  13  气泡脱离包壳表面过程

    Figure  13.  Bubble Departure Process from Cladding Surface       

    图  14  气泡脱离频率随表面粗糙度变化情况

    Figure  14.  Variation of Bubble Departure Frequency with Surface Roughness

    图  15  气泡脱离频率随脱离直径变化情况

    Figure  15.  Variation of Bubble Departure Frequency with Departure Diameter

    图  16  气泡脱离频率随接触角变化情况

    Figure  16.  Variation of Bubble Departure Frequency with Contact Angle

    图  17  气泡脱离频率拟合关联式与实验数据对比

    Figure  17.  Comparison of Bubble Departure Frequency Fitting Correlation with Experimental Data

    表  1  实验段主要参数

    Table  1.   Main Parameters of Experimental Section

    参数名参数值
    实验段总长/mm260
    实验段被加热段长度/mm100
    实验段外径/mm9.52
    实验段壁厚/mm0.58
    氧化铝陶瓷层外径/mm8.36
    氧化铝陶瓷层内径/mm6
    导热铜片外径/mm6
    导热铜片通孔直径/mm1
    铜排截面积/mm2400
    下载: 导出CSV

    表  2  直接测量参数不确定度

    Table  2.   Uncertainties of the Directly Measured Parameters

    测量参数仪表精度不确定度
    温度0.3℃0.27%
    电流1.0 A0.14%
    电压0.015 V0.12%
    Cr涂层锆合金包壳外径0.01 mm0.11%
    Cr涂层锆合金包壳长度1 mm1.0%
    气泡直径0.017 mm0.18%
    气泡接触角0.5°0.15%
    下载: 导出CSV

    表  3  间接测量参数不确定度

    Table  3.   Uncertainties of Indirectly Measured Parameters

    测量参数不确定度
    Cr涂层锆合金包壳传热面积0.1%
    实验段功率0.18%
    Cr涂层锆合金包壳外表面热流密度0.21%
    下载: 导出CSV
  • [1] TERRANI K A. Accident tolerant fuel cladding development: promise, status, and challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30. doi: 10.1016/j.jnucmat.2017.12.043
    [2] TERRANI K A, YANG Y, KIM Y J, et al. Hydrothermal corrosion of SiC in LWR coolant environments in the absence of irradiation[J]. Journal of Nuclear Materials, 2015, 465: 488-498. doi: 10.1016/j.jnucmat.2015.06.019
    [3] HIRAYAMA H, KAWAKUBO T, GOTO A, et al. Corrosion behavior of silicon carbide in 290℃ water[J]. Journal of the American Ceramic Society, 1989, 72(11): 2049-2053. doi: 10.1111/j.1151-2916.1989.tb06029.x
    [4] TANG C C, STUEBER M, SEIFERT H J, et al. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings[J]. Corrosion Reviews, 2017, 35(3): 141-165. doi: 10.1515/corrrev-2017-0010
    [5] BRACHET J C, GUILBERT T, LESAUX M, et al. Behavior of Cr-coated m5 claddings during and after high temperature steam oxidationfrom 800℃ up to 1500℃[C]. Prague: Topfue, 2018: 250-257.
    [6] BRACHET J C, DUMERVAL M, LEZAUD-CHAILLIOUX V, et al. Behavior of chromium coated M5TM claddings under LOCA conditions[C]//WRFPM 2017 Water Reactor Fuel Performance Meeting. Jeju Island: HAL, 2017.
    [7] BRACHET J C, LE SAUX M, LEZAUD-CHAILLIOUX V, et al. Behavior under LOCA conditions of enhanced accident tolerant chromium coated zircaloy-4 claddings[C]//LWR Fuel with Enhanced Safety and Performance Meeting. Boise: HAL, 2016: 1173-1178.
    [8] CORTY C. Surface variables in nucleate boiling[C].US: American Institute of Chemical Engineering, 1955: 1-12.
    [9] GRIFFITH P, WALLIS J D. The role of surface conditions in nucleate boiling: NP-7205[R]. Cambridge: Massachusetts Institute of Technology, Division of Industrial Cooperation, 1958.
    [10] CLARK H B, STRENGE P S, WESTWATER J W. Active sites for nucleate boiling[J]. Chemical Engineering Progress, 1959, 55(29): 103-110.
    [11] STEPHAN K. Mechanismus und Modellgesetz des Wärmeübergangs bei der Blasenverdampfung[J]. Chemie Ingenieur Technik, 1963, 35(11): 775-784. doi: 10.1002/cite.330351105
    [12] KIM J, JUN S, LAKSNARAIN R, et al. Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability[J]. International Journal of Heat and Mass Transfer, 2016, 101: 992-1002. doi: 10.1016/j.ijheatmasstransfer.2016.05.067
    [13] EL-GENK M S, SUSZKO A, ALI A F. Effects of surface roughness and inclination angle on nucleate boiling of PF-5060 dielectric liquid on copper[C]//ASME 2013 International Mechanical Engineering Congress and Exposition. San Diego: American Society of Mechanical Engineers, 2013.
    [14] SON H H, SEO G H, JEONG U, et al. Capillary wicking effect of a Cr-sputtered superhydrophilic surface on enhancement of pool boiling critical heat flux[J]. International Journal of Heat and Mass Transfer, 2017, 113: 115-128. doi: 10.1016/j.ijheatmasstransfer.2017.05.055
    [15] SON H H, CHO Y S, KIM S J. Dynamic wetting characteristics attributable for pool boiling heat transfer of FeCrAl-and Cr-layered vertical tubes[C]// Transactions of the Korean Nuclear Society Spring Meeting. Jeju: Korean Nuclear Society, 2017: 1-4.
    [16] JO H S, AN S, PARK H G, et al. Enhancement of critical heat flux and superheat through controlled wettability of cuprous-oxide fractal-like nanotextured surfaces in pool boiling[J]. International Journal of Heat and Mass Transfer, 2017, 107: 105-111. doi: 10.1016/j.ijheatmasstransfer.2016.11.029
    [17] 甘金来. 图像边缘检测算法的比较研究[D]. 成都: 电子科技大学, 2005.
    [18] FRITZ W. Maximum volume of vapor bubbles[J]. Physikalische Zeitschrift, 1935, 36: 379-354.
    [19] GRIFFITH P. Bubble growth rates in boiling: NP-6188[R]. Cambridge: Massachusetts Institute of Technology, 1956.
    [20] HOLLAND P W, WELSCH R E. Robust regression using iteratively reweighted least-squares[J]. Communications in Statistics-Theory and Methods, 1977, 6(9): 813-827. doi: 10.1080/03610927708827533
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  38
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 修回日期:  2021-10-20
  • 刊出日期:  2022-10-12

目录

    /

    返回文章
    返回