Experimental Study on Saturated Pool Boiling Bubble Behavior of ATF Chromium Coated Zirconium Alloy Cladding at Atmospheric Pressure
-
摘要: 铬(Cr)涂层锆合金包壳是最有前途的耐事故燃料(ATF)的新型包覆材料之一,对其表面的气泡动力学进行研究有助于评估是否具有更好的传热性能。在常压下的Cr涂层锆合金包壳池式沸腾实验装置中对不同工艺方法下制备的Cr涂层锆合金包壳进行实验,研究了粗糙度等表面状态对气泡产生、长大以及脱离等气泡行为的影响。结果表明,气泡接触角与Cr涂层表面粗糙度有关,粗糙度越大,表面气泡接触角越小;不同涂层工艺下制备的4种Cr涂层锆合金包壳样件表面的气泡脱离直径范围为1.256 ~1.446 mm,气泡脱离频率范围为29.99 ~50.97 Hz;气泡脱离直径与粗糙度呈负相关,脱离频率与粗糙度呈正相关;气泡脱离直径预测模型与实验数据之间的偏差为±6%,脱离频率预测模型与实验数据之间的偏差为±3%。
-
关键词:
- 耐事故燃料(ATF) /
- 铬(Cr)涂层锆合金包壳 /
- 气泡行为 /
- 脱离直径 /
- 脱离频率
Abstract: Chromium (Cr) - coated zirconium alloy cladding is one of the most promising new cladding materials for accident resistant fuel (ATF). The study of bubble dynamics on the surface of this new material is helpful to evaluate whether it has better heat transfer performance. experiments are carried out on Cr-coated zirconium alloy cladding prepared by different process methods in a pool boiling experimental facility for Cr-coated zirconium alloy cladding under normal pressure. The effects of surface states such as roughness on bubble generation, growth and departure behaviors are investigated.The results show that the bubble contact angle is related to the surface roughness of Cr coating. The larger the roughness, the smaller the bubble contact angle; The bubble departure diameter of the four Cr-coated zirconium alloy cladding samples prepared under different coating processes ranges from 1.256~1.446 mm, and the bubble departure frequency ranges from 29.99~50.97 Hz; the bubble departure diameter is negatively correlated with the roughness, and the departure frequency is positively correlated with the roughness; The deviation between the bubble departure diameter prediction model and the experimental data is ±6%, and the deviation between the departure frequency prediction model and the experimental data is ±3%. -
表 1 实验段主要参数
Table 1. Main Parameters of Experimental Section
参数名 参数值 实验段总长/mm 260 实验段被加热段长度/mm 100 实验段外径/mm 9.52 实验段壁厚/mm 0.58 氧化铝陶瓷层外径/mm 8.36 氧化铝陶瓷层内径/mm 6 导热铜片外径/mm 6 导热铜片通孔直径/mm 1 铜排截面积/mm2 400 表 2 直接测量参数不确定度
Table 2. Uncertainties of the Directly Measured Parameters
测量参数 仪表精度 不确定度 温度 0.3℃ 0.27% 电流 1.0 A 0.14% 电压 0.015 V 0.12% Cr涂层锆合金包壳外径 0.01 mm 0.11% Cr涂层锆合金包壳长度 1 mm 1.0% 气泡直径 0.017 mm 0.18% 气泡接触角 0.5° 0.15% 表 3 间接测量参数不确定度
Table 3. Uncertainties of Indirectly Measured Parameters
测量参数 不确定度 Cr涂层锆合金包壳传热面积 0.1% 实验段功率 0.18% Cr涂层锆合金包壳外表面热流密度 0.21% -
[1] TERRANI K A. Accident tolerant fuel cladding development: promise, status, and challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30. doi: 10.1016/j.jnucmat.2017.12.043 [2] TERRANI K A, YANG Y, KIM Y J, et al. Hydrothermal corrosion of SiC in LWR coolant environments in the absence of irradiation[J]. Journal of Nuclear Materials, 2015, 465: 488-498. doi: 10.1016/j.jnucmat.2015.06.019 [3] HIRAYAMA H, KAWAKUBO T, GOTO A, et al. Corrosion behavior of silicon carbide in 290℃ water[J]. Journal of the American Ceramic Society, 1989, 72(11): 2049-2053. doi: 10.1111/j.1151-2916.1989.tb06029.x [4] TANG C C, STUEBER M, SEIFERT H J, et al. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings[J]. Corrosion Reviews, 2017, 35(3): 141-165. doi: 10.1515/corrrev-2017-0010 [5] BRACHET J C, GUILBERT T, LESAUX M, et al. Behavior of Cr-coated m5 claddings during and after high temperature steam oxidationfrom 800℃ up to 1500℃[C]. Prague: Topfue, 2018: 250-257. [6] BRACHET J C, DUMERVAL M, LEZAUD-CHAILLIOUX V, et al. Behavior of chromium coated M5TM claddings under LOCA conditions[C]//WRFPM 2017 Water Reactor Fuel Performance Meeting. Jeju Island: HAL, 2017. [7] BRACHET J C, LE SAUX M, LEZAUD-CHAILLIOUX V, et al. Behavior under LOCA conditions of enhanced accident tolerant chromium coated zircaloy-4 claddings[C]//LWR Fuel with Enhanced Safety and Performance Meeting. Boise: HAL, 2016: 1173-1178. [8] CORTY C. Surface variables in nucleate boiling[C].US: American Institute of Chemical Engineering, 1955: 1-12. [9] GRIFFITH P, WALLIS J D. The role of surface conditions in nucleate boiling: NP-7205[R]. Cambridge: Massachusetts Institute of Technology, Division of Industrial Cooperation, 1958. [10] CLARK H B, STRENGE P S, WESTWATER J W. Active sites for nucleate boiling[J]. Chemical Engineering Progress, 1959, 55(29): 103-110. [11] STEPHAN K. Mechanismus und Modellgesetz des Wärmeübergangs bei der Blasenverdampfung[J]. Chemie Ingenieur Technik, 1963, 35(11): 775-784. doi: 10.1002/cite.330351105 [12] KIM J, JUN S, LAKSNARAIN R, et al. Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability[J]. International Journal of Heat and Mass Transfer, 2016, 101: 992-1002. doi: 10.1016/j.ijheatmasstransfer.2016.05.067 [13] EL-GENK M S, SUSZKO A, ALI A F. Effects of surface roughness and inclination angle on nucleate boiling of PF-5060 dielectric liquid on copper[C]//ASME 2013 International Mechanical Engineering Congress and Exposition. San Diego: American Society of Mechanical Engineers, 2013. [14] SON H H, SEO G H, JEONG U, et al. Capillary wicking effect of a Cr-sputtered superhydrophilic surface on enhancement of pool boiling critical heat flux[J]. International Journal of Heat and Mass Transfer, 2017, 113: 115-128. doi: 10.1016/j.ijheatmasstransfer.2017.05.055 [15] SON H H, CHO Y S, KIM S J. Dynamic wetting characteristics attributable for pool boiling heat transfer of FeCrAl-and Cr-layered vertical tubes[C]// Transactions of the Korean Nuclear Society Spring Meeting. Jeju: Korean Nuclear Society, 2017: 1-4. [16] JO H S, AN S, PARK H G, et al. Enhancement of critical heat flux and superheat through controlled wettability of cuprous-oxide fractal-like nanotextured surfaces in pool boiling[J]. International Journal of Heat and Mass Transfer, 2017, 107: 105-111. doi: 10.1016/j.ijheatmasstransfer.2016.11.029 [17] 甘金来. 图像边缘检测算法的比较研究[D]. 成都: 电子科技大学, 2005. [18] FRITZ W. Maximum volume of vapor bubbles[J]. Physikalische Zeitschrift, 1935, 36: 379-354. [19] GRIFFITH P. Bubble growth rates in boiling: NP-6188[R]. Cambridge: Massachusetts Institute of Technology, 1956. [20] HOLLAND P W, WELSCH R E. Robust regression using iteratively reweighted least-squares[J]. Communications in Statistics-Theory and Methods, 1977, 6(9): 813-827. doi: 10.1080/03610927708827533