高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于WMS的无旋和螺旋气液两相流流型及空泡份额实验研究

刘帅 陈聪 刘莉 顾汉洋 张嘉荣

刘帅, 陈聪, 刘莉, 顾汉洋, 张嘉荣. 基于WMS的无旋和螺旋气液两相流流型及空泡份额实验研究[J]. 核动力工程, 2022, 43(5): 43-50. doi: 10.13832/j.jnpe.2022.05.0043
引用本文: 刘帅, 陈聪, 刘莉, 顾汉洋, 张嘉荣. 基于WMS的无旋和螺旋气液两相流流型及空泡份额实验研究[J]. 核动力工程, 2022, 43(5): 43-50. doi: 10.13832/j.jnpe.2022.05.0043
Liu Shuai, Chen Cong, Liu Li, Gu Hanyang, Zhang Jiarong. Experimental Study on Flow Patterns and Void Fraction of Non-swirling and Swirling Gas-liquid Two-phase Flow Based on WMS[J]. Nuclear Power Engineering, 2022, 43(5): 43-50. doi: 10.13832/j.jnpe.2022.05.0043
Citation: Liu Shuai, Chen Cong, Liu Li, Gu Hanyang, Zhang Jiarong. Experimental Study on Flow Patterns and Void Fraction of Non-swirling and Swirling Gas-liquid Two-phase Flow Based on WMS[J]. Nuclear Power Engineering, 2022, 43(5): 43-50. doi: 10.13832/j.jnpe.2022.05.0043

基于WMS的无旋和螺旋气液两相流流型及空泡份额实验研究

doi: 10.13832/j.jnpe.2022.05.0043
基金项目: 国家自然科学基金项目(51906147;51876128),上海市自然科学基金资助项目(21ZR1430900)
详细信息
    作者简介:

    刘 帅(1993—),男,博士研究生,现主要从事反应堆热工水力方面的研究,E-mail: liushuai0729@163.com

    通讯作者:

    刘 莉,E-mail: liulide@sjtu.edu.cn

  • 中图分类号: TL334

Experimental Study on Flow Patterns and Void Fraction of Non-swirling and Swirling Gas-liquid Two-phase Flow Based on WMS

  • 摘要: 为探究气液两相流流型从无旋状态转变为螺旋状态前后的流型特征及空泡份额时空分布特性,基于高速摄影仪和自主开发的丝网传感器(WMS)测量技术,对内径为30 mm的水平管内起旋装置作用下空气-水两相流的相态时空演变特性进行了可视化实验研究。结果表明,在起旋器诱导的离心力作用下,流场内存在明显的气泡聚并行为和液滴沉积现象,其中,泡状流将转变为螺旋气柱流,塞状流转变为螺旋间歇流,弹状流转变为螺旋环状流,环状流转变为螺旋丝带流;相比于弹状流和环状流,泡状流和塞状流的截面平均空泡份额在起旋器出口波动幅值明显减弱,但离心力场并未明显改变各流型从无旋状态转变为螺旋状态前后的截面平均空泡份额。

     

  • 图  1  实验系统示意图

    z—轴向距离;D—管道直径

    Figure  1.  Schematic Diagram of Experimental System

    图  2  起旋器结构示意图

    θ—螺旋叶片的出口角

    Figure  2.  Schematic Diagram of Swirler Structure

    图  3  WMS在管道横截面的布置形式

    Figure  3.  Layout of WMS in Tube Cross Section

    图  4  WMS数据时空坐标

    Figure  4.  Space-time Coordinates of the WMS Data

    图  5  WMS截面平均空泡份额相对测量误差静态标定示意图     

    Figure  5.  Schematic Diagram for Static Calibration of Relative Measurement Error of Section Average Void Fraction of WMS

    图  6  截面平均空泡份额相对测量误差

    Figure  6.  Relative Measurement Error of Section Average Void Fraction

    图  7  流动成像可视化

    t—数据采集时长

    Figure  7.  Visualization of Flow Imaging

    图  8  泡状流转变为螺旋气柱流 (jl = 1.19 m/s, jg = 0.08 m/s)

    Figure  8.  Bubble Flow Transformed into Swirling Gas Column Flow(jl = 1.19 m/s, jg = 0.08 m/s)

    图  9  塞状流转变为螺旋间歇流(jl = 1.19 m/s, jg = 0.44 m/s)

    Figure  9.  Plug Flow Transformed into Swirling Intermittent Flow(jl = 1.19 m/s, jg = 0.44 m/s)

    图  10  弹状流转变为螺旋环状流(jl = 0.54 m/s, jg = 5.32 m/s)

    Figure  10.  Slug Flow Transformed into Swirling Annular Flow(jl = 0.54 m/s, jg = 5.32 m/s)

    图  11  环状流转变为螺旋丝带流(jl = 0.08 m/s, jg = 17.78 m/s)

    Figure  11.  Annular Flow Transformed into Swirling Ribbon Flow(jl = 0.08 m/s, jg = 17.78 m/s)

    图  12  无旋气液两相流型三维重构图像

    Figure  12.  3D Reconstruction Image of Non-swirling Gas-liquid Two-phase Flow Pattern

    图  13  螺旋气液两相流型三维重构图像

    Figure  13.  3D Reconstruction Image of Swirling Gas-liquid Two-phase Flow Pattern

    图  14  不同流型流经起旋器前后截面瞬时空泡份额时间序列     

    Figure  14.  Time Series Curve of Instantaneous Section Void Fraction of Different Flow Patterns in Upstream and Downstream of Swirler

    图  15  不同流型流经起旋器前后截面平均空泡份额对比

    Figure  15.  Comparison of Section Average Void Fraction of Different Flow Patterns in Upstream and Downstream of Swirler

  • [1] KONG R, KIM S. Characterization of horizontal air-water two-phase flow[J]. Nuclear Engineering and Design, 2017, 312: 266-276. doi: 10.1016/j.nucengdes.2016.06.016
    [2] SETYAWAN A, INDARTO, DEENDARLIANTO. Experimental investigations of the circumferential liquid film distribution of air-water annular two-phase flow in a horizontal pipe[J]. Experimental Thermal and Fluid Science, 2017, 85: 95-118. doi: 10.1016/j.expthermflusci.2017.02.026
    [3] DINARYANTO O, PRAYITNO Y A K, MAJID A I, et al. Experimental investigation on the initiation and flow development of gas-liquid slug two-phase flow in a horizontal pipe[J]. Experimental Thermal and Fluid Science, 2017, 81: 93-108. doi: 10.1016/j.expthermflusci.2016.10.013
    [4] LIU L, YING B B, GU H Y, et al. Experimental study on the separation performance of a full-scale SG steam-water separator[J]. Annals of Nuclear Energy, 2020, 141: 107330. doi: 10.1016/j.anucene.2020.107330
    [5] 徐晗,路铭超,熊珍琴,等. 疏水孔对旋叶分离器分离效率影响研究[J]. 核动力工程,2020, 41(4): 70-75.
    [6] 刘妍,柯炳正,王先元,等. 两级旋风式汽水分离器的分离性能研究[J]. 核动力工程,2020, 41(2): 114-119.
    [7] CAI B W, WANG J J, SUN L C, et al. Experimental study and numerical optimization on a vane-type separator for bubble separation in TMSR[J]. Progress in Nuclear Energy, 2014, 74: 1-13. doi: 10.1016/j.pnucene.2014.02.007
    [8] LIU S, YANG L L, ZHANG D, et al. Separation characteristics of the gas and liquid phases in a vane-type swirling flow field[J]. International Journal of Multiphase Flow, 2018, 107: 131-145. doi: 10.1016/j.ijmultiphaseflow.2018.05.025
    [9] 刘雯,程小莉,陈勇,等. 管内螺旋导流板引发的气液两相旋流场[J]. 机械工程学报,2013, 49(22): 164-169.
    [10] MANGLIK R M, BERGLES A E. Characterization of twisted-tape-induced helical swirl flows for enhancement of forced convective heat transfer in single-phase and two-phase flows[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(2): 021010. doi: 10.1115/1.4023935
    [11] ROITBERG E, SHEMER L, BARNEA D. Measurements of cross-sectional instantaneous phase distribution in gas-liquid pipe flow[J]. Experimental Thermal and Fluid Science, 2007, 31(8): 867-875. doi: 10.1016/j.expthermflusci.2006.09.002
    [12] 白博峰,郭烈锦,赵亮. 汽(气)液两相流流型在线识别的研究进展[J]. 力学进展,2001, 31(3): 437-446. doi: 10.3321/j.issn:1000-0992.2001.03.010
    [13] LIU L, BAI B F. Flow regime identification of swirling gas-liquid flow with image processing technique and neural networks[J]. Chemical Engineering Science, 2019, 199: 588-601. doi: 10.1016/j.ces.2019.01.037
    [14] 徐海淞,王季,熊进标,等. 基于两相CFD方法的竖直圆管环状流预测研究[J]. 核动力工程,2019, 40(6): 7-12.
    [15] LUCAS D, KREPPER E, PRASSER H M. Development of co-current air-water flow in a vertical pipe[J]. International Journal of Multiphase Flow, 2005, 31(12): 1304-1328. doi: 10.1016/j.ijmultiphaseflow.2005.07.004
    [16] DA SILVA M J, SCHLEICHER E, HAMPEL U. Capacitance wire-mesh sensor for fast measurement of phase fraction distributions[J]. Measurement Science and Technology, 2007, 18(7): 2245-2251. doi: 10.1088/0957-0233/18/7/059
    [17] PRASSER H M, HÄFELI R. Signal response of wire-mesh sensors to an idealized bubbly flow[J]. Nuclear Engineering and Design, 2018, 336: 3-14. doi: 10.1016/j.nucengdes.2017.04.016
    [18] KANAI T, FURUYA M, ARAI T, et al. Three-dimensional phasic velocity determination methods with wire-mesh sensor[J]. International Journal of Multiphase Flow, 2012, 46: 75-86. doi: 10.1016/j.ijmultiphaseflow.2012.06.006
    [19] PRASSER H M, SCHOLZ D, ZIPPE C. Bubble size measurement using wire-mesh sensors[J]. Flow Measurement and Instrumentation, 2001, 12(4): 299-312. doi: 10.1016/S0955-5986(00)00046-7
    [20] ABDULKADIR M, HERNANDEZ-PEREZ V, LOWNDES I S, et al. Experimental study of the hydrodynamic behaviour of slug flow in a horizontal pipe[J]. Chemical Engineering Science, 2016, 156: 147-161. doi: 10.1016/j.ces.2016.09.015
    [21] ROCHA A D, BANNWART A C, GANZAROLLI M M. Numerical and experimental study of an axially induced swirling pipe flow[J]. International Journal of Heat and Fluid Flow, 2015, 53: 81-90. doi: 10.1016/j.ijheatfluidflow.2015.02.003
    [22] GU H Y, GUO L J. Modeling of bubble shape in horizontal and inclined tubes[J]. Progress in Nuclear Energy, 2016, 89: 88-101. doi: 10.1016/j.pnucene.2016.02.011
    [23] CONTE M G, HEGDE G A, DA SILVA M J, et al. Characterization of slug initiation for horizontal air-water two-phase flow[J]. Experimental Thermal and Fluid Science, 2017, 87: 80-92. doi: 10.1016/j.expthermflusci.2017.04.023
    [24] THAKER J, BANERJEE J. On intermittent flow characteristics of gas–liquid two-phase flow[J]. Nuclear Engineering and Design, 2016, 310: 363-377. doi: 10.1016/j.nucengdes.2016.10.020
    [25] CHEN B M, HO K, ABAKR Y A, et al. Fluid dynamics and heat transfer investigations of swirling decaying flow in an annular pipe part 2: fluid flow[J]. International Journal of Heat and Mass Transfer, 2016, 97: 1012-1028. doi: 10.1016/j.ijheatmasstransfer.2016.01.069
    [26] LIU W, LV X F, BAI B F. Axial development of air-water annular flow with swirl in a vertical pipe[J]. International Journal of Multiphase Flow, 2020, 124: 103165. doi: 10.1016/j.ijmultiphaseflow.2019.103165
    [27] PRASSER H M, BÖTTGER A, ZSCHAU J. A new electrode-mesh tomograph for gas-liquid flows[J]. Flow Measurement and Instrumentation, 1998, 9(2): 111-119. doi: 10.1016/S0955-5986(98)00015-6
    [28] LIU L, WANG K, BAI B F. Experimental study on flow patterns and transition criteria for vertical swirling gas-liquid flow[J]. International Journal of Multiphase Flow, 2020, 122: 103113. doi: 10.1016/j.ijmultiphaseflow.2019.103113
  • 加载中
图(15)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  41
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01
  • 修回日期:  2022-07-19
  • 刊出日期:  2022-10-12

目录

    /

    返回文章
    返回