Minimum Required Burnup Analysis of Liquid-fueled Molten Chlorine Salt Fast Reactor
-
摘要: 为探究采用增殖燃烧模式运行的液态燃料氯盐快堆的平均卸料燃耗深度,基于中子平衡分析方法,选取5种常用氯盐,提出在线清除裂变气体和难溶裂变产物方案来维持增殖燃烧运行模式,主要研究分析了氯盐的重金属密度和在线处理方案对最小需求燃耗的影响以及无限栅元模型下维持增殖燃烧模式可接受的堆芯中子损失项。分析表明68NaCl-32UCl3和20UCl3-80UCl4的最小需求燃耗分别是30.47%FIMA(FIMA是指已裂变原子数与初始的总装料金属原子数之比)和10.28%FIMA;清除裂变气体和难溶裂变产物后,60NaCl-40UCl3可接受的中子损失项从3.49%提高到10.68%。结果表明氯盐的重金属密度对最小需求燃耗有明显影响,同时清除裂变气体和难溶裂变产物能够较大提高燃料盐系统的中子经济性,以及提高增殖燃烧模式运行可接受的堆芯中子损失项。Abstract: In order to explore the average discharge burnup depth of liquid-fueled molten chlorine salt fast reactor operating in the breed-and-burn mode, based on the neutron balance analysis method, five common chlorine salts are selected, and the scheme of online removal of fission gas and insoluble fission products is proposed to maintain the breed-and-burn operation mode. The effects of heavy metal density of chloride salt and online treatment scheme on minimum required burnup and acceptable core neutron loss term for maintaining the breed-and-burn mode in the infinite cell model are mainly studied and analyzed. The analysis shows that the minimum required burnup of 68NaCl-32UCl3 and 20UCl3-80UCl4 is 30.47% FIMA (FIMA refers to the ratio of the number of fissioned atoms to the total number of initially loaded metal atoms) and 10.28% FIMA respectively; After removing fission gas and insoluble fission products, the acceptable neutron loss term for 60NaCl-40UCl3 is increased from 3.49% to 10.68%. The results show that the density of heavy metals in chloride salts has a significant impact on the minimum required burnup, and the removal of fission gases and insoluble fission products can greatly improve the neutron economy of the fuel salt system, and at the same time, improve the acceptable core neutron loss term for the breed-and-burn operation mode.
-
表 1 B&B模式堆型常用燃料和燃料盐的密度
Table 1. Densities of Common Nuclear Fuels and Fuel Salts for B&B Type Reactors
固态燃料类型 UN UC U-10Zr U-10Mo U 有效密度/% 85 85 75 75 75 燃料孔隙率/% 6 6 0 0 0 燃料理论密度/(g·cm−3) 13.59 12.58 15.80 16.70 18.53 燃料实际密度/(g·cm−3) 10.86 10.05 11.85 12.53 13.90 燃料重金属密度/(g·cm−3) 10.91 10.30 10.67 11.29 13.90 堆芯重金属密度①/(g·cm−3) 5.61 5.24 6.21 6.57 8.10 液态氯盐类型 68NaCl-32UCl3 60NaCl-40UCl3 15NaCl-15UCl3-70UCl4 UCl4 20UCl3-80UCl4 密度②/(g·cm−3) 3.32 3.64 3.64 3.56 3.79 堆芯重金属密度/(g·cm−3) 0.72 0.99 2.80 2.20 2.39 注:①堆芯燃料占比取为43.7%;②燃料盐温度为900 K 表 2 Q=0时各方案最小需求燃耗对比
Table 2. Comparison of Minimum Required Burnup of Each Scheme when Q=0
燃料盐类型 最小需求燃耗/%FIMA 不处理 清除裂
变气体清除裂变气体和
难溶裂变产物68NaCl-32UCl3 30.47 27.25 19.65 60NaCl-40UCl3 19.60 19.09 15.83 UCl4 10.51 10.45 9.61 20UCl3-80UCl4 10.28 10.21 9.40 15NaCl-15UCl3-70UCl4 11.26 11.18 10.22 表 3 各方案可承受的最大中子损失项和对应的最小需 求燃耗
Table 3. Maximum Acceptable Neutron Loss Term and the Corresponding Minimum Required Burnup for Each Scheme
燃料盐类型 不处理 清除裂变气体和难溶裂变产物 最大中子
损失项/%最小需求
燃耗/%FIMA最大中子
损失项/%最小需求
燃耗/%FIMA68NaCl-32UCl3 0.33 35.70 7.49 46.40 60NaCl-40UCl3 3.49 35.30 10.68 47.06 UCl4 12.15 32.83 18.40 46.62 20UCl3-80UCl4 12.30 31.29 18.72 46.22 15NaCl-15UCl3-
70UCl411.05 33.27 17.47 47.12 -
[1] GREENSPAN E, HEIDET F. Energy sustainability and economic stability with breed and burn reactors[J]. Progress in Nuclear Energy, 2011, 53(7): 794-799. doi: 10.1016/j.pnucene.2011.05.002 [2] HOMBOURGER B, PAUTZ A, KREPEL J, et al. On the feasibility of breed-and-burn fuel cycles in molten salt reactors: FR17[R]. Vienna: International Atomic Energy Agency, 2017. [3] HOMBOURGER B, KŘEPEL J, PAUTZ A. Breed-and-burn fuel cycle in molten salt reactors[J]. EPJ Nuclear Sciences & Technologies, 2019, 5: 15. [4] HOMBOURGER B A. Conceptual design of a sustainable waste burning molten salt reactor[Z]. Lausanne: EPFL, 2018. [5] KASAM A. Conceptual design of a breed & burn molten salt reactor[D]. Cambridge: University of Cambridge, 2019. [6] MARTIN M V, AUFIERO M, GREENSPAN E, et al. Feasibility of a breed-and-burn molten salt reactor[J]. Transactions of the American Nuclear Society, 2017, 116: 1174-1176. [7] HEIDET F, GREENSPAN E. Neutron balance analysis for sustainability of breed-and-burn reactors[J]. Nuclear Science and Engineering, 2012, 171(1): 13-31. doi: 10.13182/NSE10-114