Study on Nucleation Site Density of Surfaces Modified by Femtosecond Laser
-
摘要: 以不锈钢材料为实验件,采用飞秒激光技术加工有序微纳结构来制备改性表面,并以去离子水为工质开展池沸腾核化点密度实验研究,获取了不同热工参数条件下3种不同实验表面(常规表面、改性表面1、改性表面2)的核化点密度实验数据,定量分析了核化点密度随壁面过热度的变化规律,并以李权模型为基础拟合得到改进核化点密度模型。研究发现,3种实验表面的核化点密度均随壁面过热度的升高而增大,且相同热工参数下改性表面的核化点密度显著大于常规表面;改进模型优化了核化点密度的预测值,且预测值与实验数据吻合较好。Abstract: Using stainless steel as the experimental piece, femtosecond laser technology is used to fabricate ordered micro-nano structures to prepare modified surfaces. The pool boiling nucleation site density experiment is carried out with deionized water as the working medium, and the nucleation site density experimental data of three different experimental surfaces (conventional surface, modified surface 1, and modified surface 2) under different thermal parameters are obtained. The variation law of nucleation site density with wall superheat degree is quantitatively analyzed, and an improved nucleation site density model is obtained by fitting on the basis of the Liquan model. It is found that the nucleation site density of the three experimental surfaces increases with the increase of wall superheat degree, and the nucleation site density of the modified surface is significantly higher than that of the conventional surface under the same thermal parameters.The improved model optimizes the predicted value of nucleation site density, and the predicted value is in good agreement with the experimental data.
-
Key words:
- Nucleation site density /
- Pool boiling /
- Femtosecond laser /
- Modified surface /
- Improved model
-
表 1 实验表面特性参数
Table 1. Characteristic Parameters of the Experimental Surfaces
表面类型 面粗糙度
(Sa)/μm表面接触角
(θ)空穴直径
(d)/μm空穴间距
(w)/μm常规表面 0.2615 62.51° — — 改性表面1 18.7165 109.49° 18.27 28.42 改性表面2 14.576 100.06° 30.13 45.82 “—”表示无数据 表 2 实验工况及统计数据
Table 2. Experimental Conditions and Statistical Data
工况
编号表面类型 q
/(kW·m−2)ΔTw/℃ Na/m−2 1 常规表面 18.7 3.5 7.50×103 2 常规表面 27.8 5.2 3.25×104 3 常规表面 34.6 6.3 4.00×104 4 常规表面 42.3 7.2 7.00×104 5 改性表面1 19.9 1.6 9.29×103 6 改性表面1 24.5 3.1 1.42×105 7 改性表面1 32.7 3.7 3.59×105 8 改性表面1 41.7 4.3 7.00×105 9 改性表面2 11.9 1.0 3.21×105 10 改性表面2 17.2 2.1 1.42×106 11 改性表面2 21.5 4.0 1.64×106 -
[1] KURIHARA H M, MYERS J E. The effects of superheat and surface roughness on boiling coefficients[J]. AIChE Journal, 1960, 6(1): 83-91. doi: 10.1002/aic.690060117 [2] KOCAMUSTAFAOGULLARI G, ISHII M. Interfacial area and nucleation site density in boiling systems[J]. International Journal of Heat and Mass Transfer, 1983, 26(9): 1377-1387. doi: 10.1016/S0017-9310(83)80069-6 [3] BENJAMIN R J, BALAKRISHNAN A R. Nucleation site density in pool boiling of saturated pure liquids: effect of surface microroughness and surface and liquid physical properties[J]. Experimental Thermal and Fluid Science, 1997, 15(1): 32-42. doi: 10.1016/S0894-1777(96)00168-9 [4] HIBIKI T, ISHII M. Active nucleation site density in boiling systems[J]. International Journal of Heat and Mass Transfer, 2003, 46(14): 2587-2601. doi: 10.1016/S0017-9310(03)00031-0 [5] CALMANO T, PASCHKE A G, SIEBENMORGEN J, et al. Characterization of an Yb: YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique[J]. Applied Physics B, 2011, 103(1): 1-4. [6] BASU N, WARRIER G R, DHIR V K. Onset of nucleate boiling and active nucleation site density during subcooled flow boiling[J]. Journal of Heat Transfer, 2002, 124(4): 717-728. doi: 10.1115/1.1471522 [7] 李权. 压水堆格架棒束通道CHF数值预测模型开发及方法研究[D]. 北京: 清华大学, 2017: 25-40. [8] WANG C H, DHIR V K. Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface[J]. Journal of Heat Transfer, 1993, 115(3): 659-669. doi: 10.1115/1.2910737 [9] HAHNE E, GRIGULL U. Heat Transfer in Boiling[M]. USA, New York: Academic Press, 1977: 237-247.