Experimental Study on Effect of Subcooling Degree and Roughness on Quenching Boiling of FeCrAl Plate
-
摘要: 为了探究过冷度和表面粗糙度对铁铬铝(FeCrAl )平板淬冷沸腾的影响,对FeCrAl 平板在不同过冷度和表面粗糙度下的淬冷沸腾过程开展了可视化实验研究。采用热电偶测量平板内部温度,并利用导热反问题解析式求解平板表面温度和热流密度;通过对比分析实验现象,探究过冷度和表面粗糙度对平板淬冷沸腾过程的影响,并建立了过冷度与最小膜态沸腾温度的关系式。结果表明,淬冷沸腾过程中,FeCrAl 平板表面形成开尔文一亥姆霍兹(K-H)不稳定波,且气膜破裂后产生的骤冷前沿呈“抛物线”状;随着过冷度的增加,最小膜态沸腾温度增大,临界热流密度增大,平板表面冷却速率加快,淬冷沸腾过程的时长缩短;较大的表面粗糙度可以促进FeCrAl 平板表面淬冷沸腾的进行,但影响微小。
-
关键词:
- 铁铬铝(FeCrAl )平板;粗糙度 /
- 过冷度 /
- 淬冷沸腾 /
- 最小膜态沸腾温度
Abstract: In order to investigate the effect of subcooling degree and surface roughness on the quenching boiling process of FeCrAl plate, a visual experimental study is carried out on the quenching boiling process of FeCrAl plate under different subcooling degree and surface roughness. The temperature inside the plate is measured by thermocouple, and the surface temperature and heat flux of the plate are solved analytically by using the inverse problem of heat conduction; Through the comparative analysis of the experimental phenomena, the effect of subcooling degree and surface roughness on the plate quenching boiling process is investigated, and the relationship between subcooling degree and the minimum film boiling temperature is established. The results show that during the quenching boiling process, the Kelvin-Helmholtz unstable wave is formed on the surface of the plate, and the sudden cooling front caused by the rupture of the gas film is in the shape of “parabola”. With the increase of subcooling degree, the minimum film boiling temperature and critical heat flux increase, the cooling rate of plate surface increases, and the duration of quenching boiling process shortens; Larger surface roughness can promote the progress of quench boiling on flat surfaces but the effect is small. -
-
[1] 林诚格,刘志弢,赵瑞昌. 压水堆失水事故最佳估算方法研究[J]. 核安全,2010(1): 1-12. doi: 10.3969/j.issn.1672-5360.2010.01.001 [2] 王泽锋. 事故容错燃料包壳高温表面沸腾传热特性的实验研究[D]. 上海: 上海交通大学, 2019. [3] 刘俊凯,张新虎,恽迪. 事故容错燃料包壳候选材料的研究现状及展望[J]. 材料导报,2018, 32(11): 1757-1778. doi: 10.11896/j.issn.1005-023X.2018.11.001 [4] WANG Z F, XIONG J B, YAO W Y, et al. Experimental investigation on the Leidenfrost phenomenon of droplet impact on heated silicon carbide surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1206-1217. doi: 10.1016/j.ijheatmasstransfer.2018.09.091 [5] WANG Z F, QU W H, XIONG J B, et al. Investigation on effect of surface properties on droplet impact cooling of cladding surfaces[J]. Nuclear Engineering and Technology, 2020, 52(3): 508-519. doi: 10.1016/j.net.2019.08.022 [6] 陆建峰,彭晓峰,丁静. 竖直平板上淬冷沸腾的传热特性[J]. 工程热物理学报,2010, 31(7): 1198-1200. [7] WANG Z F, ZHONG M J, DENG J, et al. Experimental investigation on the transient film boiling heat transfer during quenching of FeCrAl[J]. Annals of Nuclear Energy, 2021, 150: 107842. doi: 10.1016/j.anucene.2020.107842 [8] LEE C Y, KIM S. Parametric investigation on transient boiling heat transfer of metal rod cooled rapidly in water pool[J]. Nuclear Engineering and Design, 2017, 313: 118-128. doi: 10.1016/j.nucengdes.2016.12.005 [9] YEOM H, JO H, JOHNSON G, et al. Transient pool boiling heat transfer of oxidized and roughened Zircaloy-4 surfaces during water quenching[J]. International Journal of Heat and Mass Transfer, 2018, 120: 435-446. doi: 10.1016/j.ijheatmasstransfer.2017.12.060 [10] JIN Y, SHIRVAN K. Study of the film boiling heat transfer and two-phase flow interface behavior using image processing[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121517. doi: 10.1016/j.ijheatmasstransfer.2021.121517 [11] BURGGRAF O R. An exact solution of the inverse problem in heat conduction theory and applications[J]. Journal of Heat Transfer, 1964, 86(3): 373-380. doi: 10.1115/1.3688700