高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热老化温度对高Si含量F/M钢中Laves相析出行为和冲击性能的影响

周军 邱绍宇 邱日盛 曾文 王浩 舒茗 杨灿湘

周军, 邱绍宇, 邱日盛, 曾文, 王浩, 舒茗, 杨灿湘. 热老化温度对高Si含量F/M钢中Laves相析出行为和冲击性能的影响[J]. 核动力工程, 2022, 43(5): 126-132. doi: 10.13832/j.jnpe.2022.05.0126
引用本文: 周军, 邱绍宇, 邱日盛, 曾文, 王浩, 舒茗, 杨灿湘. 热老化温度对高Si含量F/M钢中Laves相析出行为和冲击性能的影响[J]. 核动力工程, 2022, 43(5): 126-132. doi: 10.13832/j.jnpe.2022.05.0126
Zhou Jun, Qiu Shaoyu, Qiu Risheng, Zeng Wen, Wang Hao, Shu Ming, Yang Canxiang. Effect of Thermal Aging Temperature on Precipitation Behavior of Laves Phase and Impact Performance in High Si Content Ferritic Martensitic Steels[J]. Nuclear Power Engineering, 2022, 43(5): 126-132. doi: 10.13832/j.jnpe.2022.05.0126
Citation: Zhou Jun, Qiu Shaoyu, Qiu Risheng, Zeng Wen, Wang Hao, Shu Ming, Yang Canxiang. Effect of Thermal Aging Temperature on Precipitation Behavior of Laves Phase and Impact Performance in High Si Content Ferritic Martensitic Steels[J]. Nuclear Power Engineering, 2022, 43(5): 126-132. doi: 10.13832/j.jnpe.2022.05.0126

热老化温度对高Si含量F/M钢中Laves相析出行为和冲击性能的影响

doi: 10.13832/j.jnpe.2022.05.0126
基金项目: 中核集团集中研发项目“铅铋合金冷却反应堆技术”
详细信息
    作者简介:

    周 军(1984—),男,博士研究生,现主要从事核燃料及结构材料研究,E-mail: 330921035@qq.com

    通讯作者:

    邱绍宇,E-mail: fmkl@npic.ac.cn

  • 中图分类号: TL34

Effect of Thermal Aging Temperature on Precipitation Behavior of Laves Phase and Impact Performance in High Si Content Ferritic Martensitic Steels

  • 摘要: 铁素体马氏体钢(F/M钢)是铅冷快堆堆芯的主要候选材料之一,提高材料中的Si含量可提高其抗腐蚀性能,但同时会促进Laves相的析出从而影响材料韧塑性。针对一种Si含量为0.98%的F/M钢,开展了3种温度(500、550、600℃)下5000 h的热老化实验,研究了温度对Laves相析出行为和冲击性能的影响。结果表明,热老化温度升高能够促进Laves相的形核和粗化,且温度从550℃提高至600℃,Laves相的粗化速率从3.7 nm/h1/3提高至9.0 nm/h1/3。另一方面,热老化温度升高将加速冲击性能的退化,在550℃和600℃下热老化500 h,冲击功(AKV)值分别下降至热老化前的51%和39%,而在500℃下热老化2500 h,AKV值仍保持热老化前的75%。Laves相的析出与冲击性能退化有强烈的对应关系,是冲击性能退化的主要原因。

     

  • 图  1  Z4在热老化前的背散射电子图

    Figure  1.  Backscattered Electron Image of Z4 before Thermal Aging

    图  2  Z4在500℃下热老化后的背散射电子图

    Figure  2.  Backscattered Electron Images of Z4 after Thermal Aging at 500℃

    图  3  Z4在550℃下热老化后的背散射电子图

    Figure  3.  Backscattered Electron Images of Z4 after Thermal Aging at 550℃

    图  4  Z4在600℃下热老化后的背散射电子图

    Figure  4.  Backscattered Electron Images of Z4 after Thermal Aging at 600℃

    图  5  不同热老化状态下Z4中Laves密度、面积分数、平均直径变化和粗化动力学方程曲线图

    Figure  5.  Curves of Laves Phase Density, Area Fraction, Average Diameter Change and Coarsening Kinetic Equation in Z4 under Different Aging Conditions

    图  6  Z4在600℃温度下热老化1000 h时Laves相的形貌和电子衍射图       

    Figure  6.  Images of Laves Phase Morphology and Electronogram of Z4 Thermal Ageing at 600℃ for 1000 h

    图  7  Z4在不同热老化温度下室温冲击功AKV以及纤维断面率随热老化时间的变化曲线

    Figure  7.  Variation Curves of the Impact Energy AKV at Room Temperature and Fiber Cross-sectional Rate with Aging Time under Different Aging Temperatures

    表  1  Z4的化学成分构成

    Table  1.   Chemical Composition of Z4

    元素SiCCrMoWVMnNiFe
    质量分数/%0.980.219.681.000.790.200.870.56
     “—”表示未检测到该元素
    下载: 导出CSV
  • [1] PANAIT C G, BENDICK W, FUCHSMANN A, et al. Study of the microstructure of the Grade 91 steel after more than 100, 000 h of creep exposure at 600 C[J]. International Journal of Pressure Vessels and Piping, 2010, 87(6): 326-335. doi: 10.1016/j.ijpvp.2010.03.017
    [2] AITKALIYEVA A, HE L, WEN H, et al. 7- Irradiation effects in generation IV nuclear reactor materials[M]//YVON P. Structural Materials for Generation IV Nuclear Reactors. Duxford: Woodhead Publishing, 2017: 253-283.
    [3] BUCKTHORPE D. 1- introduction to generation IV nuclear reactor[M]//YVON P. Structural Materials for Generation IV Nuclear Reactors. Duxford: Woodhead Publishing, 2017: 1-22.
    [4] BARBIER F, BENAMATI G, FAZIO C, et al. Compatibility tests of steels in flowing liquid lead-bismuth[J]. Journal of Nuclear Materials, 2001, 295(2-3): 149-156. doi: 10.1016/S0022-3115(01)00570-0
    [5] MÜLLER G, HEINZEL A, KONYS J, et al. Results of steel corrosion tests in flowing liquid Pb/Bi at 420-600 C after 2000 hours[J]. Journal of Nuclear Materials, 2002, 301(1): 40-46. doi: 10.1016/S0022-3115(01)00725-5
    [6] KIPELOVA A, KAIBYSHEV R, BELYAKOV A, et al. Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions[J]. Materials Science and Engineering:A, 2011, 528(3): 1280-1286. doi: 10.1016/j.msea.2010.10.006
    [7] HOSOI Y, WADE N, KUNIMITSU S, et al. Precipitation behavior of Laves phase and its effect on toughness of 9Cr-2Mo ferritic-martensitic steel[J]. Journal of Nuclear Materials, 1986, 141-143: 461-467. doi: 10.1016/S0022-3115(86)80083-6
    [8] HU P, YAN W, SHA W, et al. Microstructure evolution of a 10Cr heat-resistant steel during high temperature creep[J]. Journal of Materials Science & Technology, 2011, 27(4): 344-351.
    [9] ISIK M I, KOSTKA A, EGGELER G. On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels[J]. Acta Materialia, 2014, 81: 230-240. doi: 10.1016/j.actamat.2014.08.008
    [10] ISIK M I, KOSTKA A, YARDLEY V A, et al. The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels[J]. Acta Materialia, 2015, 90: 94-104. doi: 10.1016/j.actamat.2015.01.027
    [11] AGHAJANI A, RICHTER F, SOMSEN C, et al. On the formation and growth of Mo-rich Laves phase particles during long-term creep of a 12% chromium tempered martensite ferritic steel[J]. Scripta Materialia, 2009, 61(11): 1068-1071. doi: 10.1016/j.scriptamat.2009.08.031
    [12] DIMMLER G, WEINERT P, KOZESCHNIK E, et al. Quantification of the Laves phase in advanced 9-12% Cr steels using a standard SEM[J]. Materials Characterization, 2003, 51(5): 341-352. doi: 10.1016/j.matchar.2004.02.003
    [13] LI M M, CHEN W Y. Microstructure-based prediction of thermal aging strength reduction factors for grade 91 ferritic-martensitic steel[J]. Materials Science and Engineering:A, 2020, 798: 140116. doi: 10.1016/j.msea.2020.140116
    [14] XU Y T, NIE Y H, WANG M J, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging[J]. Acta Materialia, 2017, 131: 110-122. doi: 10.1016/j.actamat.2017.03.045
    [15] TKACHEV E, BELYAKOV A, KAIBYSHEV R. Creep strength breakdown and microstructure in a 9%Cr steel with high B and Low N contents[J]. Materials Science and Engineering:A, 2020, 772: 138821. doi: 10.1016/j.msea.2019.138821
    [16] CHEN S H, RONG L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel[J]. Journal of Nuclear Materials, 2015, 459: 13-19. doi: 10.1016/j.jnucmat.2015.01.004
    [17] PHILIPPE T, VOORHEES P W. Ostwald ripening in multicomponent alloys[J]. Acta Materialia, 2013, 61(11): 4237-4244. doi: 10.1016/j.actamat.2013.03.049
    [18] AGHAJANI A, SOMSEN C, EGGELER G. On the effect of long-term creep on the microstructure of a 12% Chromium tempered martensite ferritic steel[J]. Acta Materialia, 2009, 57(17): 5093-5106. doi: 10.1016/j.actamat.2009.07.010
    [19] XU Y T, LI W, WANG M J, et al. Nano-sized MX carbonitrides contribute to the stability of mechanical properties of martensite ferritic steel in the later stages of long-term aging[J]. Acta Materialia, 2019, 175: 148-159. doi: 10.1016/j.actamat.2019.06.012
    [20] WANG W, XU G, SONG L L. Long-term stability of precipitated phases in CLAM steel during thermal aging[J]. Journal of Nuclear Materials, 2019, 521: 56-62. doi: 10.1016/j.jnucmat.2019.04.034
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  32
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-11
  • 修回日期:  2022-07-27
  • 刊出日期:  2022-10-12

目录

    /

    返回文章
    返回