Effect of Thermal Aging Temperature on Precipitation Behavior of Laves Phase and Impact Performance in High Si Content Ferritic Martensitic Steels
-
摘要: 铁素体马氏体钢(F/M钢)是铅冷快堆堆芯的主要候选材料之一,提高材料中的Si含量可提高其抗腐蚀性能,但同时会促进Laves相的析出从而影响材料韧塑性。针对一种Si含量为0.98%的F/M钢,开展了3种温度(500、550、600℃)下5000 h的热老化实验,研究了温度对Laves相析出行为和冲击性能的影响。结果表明,热老化温度升高能够促进Laves相的形核和粗化,且温度从550℃提高至600℃,Laves相的粗化速率从3.7 nm/h1/3提高至9.0 nm/h1/3。另一方面,热老化温度升高将加速冲击性能的退化,在550℃和600℃下热老化500 h,
冲击功(AKV)值分别下降至热老化前的51%和39%,而在500℃下热老化2500 h,AKV值仍保持热老化前的75%。Laves相的析出与冲击性能退化有强烈的对应关系,是冲击性能退化的主要原因。 -
关键词:
- 铁素体马氏体钢(F/M钢) /
- 高Si含量 /
- Laves相 /
- 冲击性能
Abstract: Ferritic martensitic steel (F/M steel) is one of the main candidate materials for lead-cooled fast reactor core. Increasing Si content can improve its corrosion resistance, but at the same time, it can promote the precipitation of Laves phase, thus affecting the toughness and plasticity of the material. For a F/M steel with a Si content of 0.98%, thermal aging experiments for 5000 h at three temperatures (500, 550 and 600℃) are carried out to study the effect of temperature on the precipitation behavior of Laves phase and impact performance. The results show that heating can promote the nucleation and coarsening of Laves phase, and with the temperature increasing from 550℃ to 600℃, the coarsening rate of Laves phase increases from 3.7 nm/h1/3 to 9.0 nm/h1/3. On the other hand, the increase of thermal aging temperature will accelerate the degradation of impact performance. After thermal aging at 550℃ and 600℃ for 500 h, the impact work (AKV) decreases to 51% and 39% of that before thermal aging, respectively, while the AKV value remains 75% of that before thermal aging for 2500 h at 500℃. The precipitation of Laves phase has a strong corresponding relationship with the degradation of impact performance, which is the main reason for the degradation of impact performance. egradation of impact performance. -
表 1 Z4的化学成分构成
Table 1. Chemical Composition of Z4
元素 Si C Cr Mo W V Mn Ni Fe 质量分数/% 0.98 0.21 9.68 1.00 0.79 0.20 0.87 0.56 — “—”表示未检测到该元素 -
[1] PANAIT C G, BENDICK W, FUCHSMANN A, et al. Study of the microstructure of the Grade 91 steel after more than 100, 000 h of creep exposure at 600 C[J]. International Journal of Pressure Vessels and Piping, 2010, 87(6): 326-335. doi: 10.1016/j.ijpvp.2010.03.017 [2] AITKALIYEVA A, HE L, WEN H, et al. 7- Irradiation effects in generation IV nuclear reactor materials[M]//YVON P. Structural Materials for Generation IV Nuclear Reactors. Duxford: Woodhead Publishing, 2017: 253-283. [3] BUCKTHORPE D. 1- introduction to generation IV nuclear reactor[M]//YVON P. Structural Materials for Generation IV Nuclear Reactors. Duxford: Woodhead Publishing, 2017: 1-22. [4] BARBIER F, BENAMATI G, FAZIO C, et al. Compatibility tests of steels in flowing liquid lead-bismuth[J]. Journal of Nuclear Materials, 2001, 295(2-3): 149-156. doi: 10.1016/S0022-3115(01)00570-0 [5] MÜLLER G, HEINZEL A, KONYS J, et al. Results of steel corrosion tests in flowing liquid Pb/Bi at 420-600 C after 2000 hours[J]. Journal of Nuclear Materials, 2002, 301(1): 40-46. doi: 10.1016/S0022-3115(01)00725-5 [6] KIPELOVA A, KAIBYSHEV R, BELYAKOV A, et al. Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions[J]. Materials Science and Engineering:A, 2011, 528(3): 1280-1286. doi: 10.1016/j.msea.2010.10.006 [7] HOSOI Y, WADE N, KUNIMITSU S, et al. Precipitation behavior of Laves phase and its effect on toughness of 9Cr-2Mo ferritic-martensitic steel[J]. Journal of Nuclear Materials, 1986, 141-143: 461-467. doi: 10.1016/S0022-3115(86)80083-6 [8] HU P, YAN W, SHA W, et al. Microstructure evolution of a 10Cr heat-resistant steel during high temperature creep[J]. Journal of Materials Science & Technology, 2011, 27(4): 344-351. [9] ISIK M I, KOSTKA A, EGGELER G. On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels[J]. Acta Materialia, 2014, 81: 230-240. doi: 10.1016/j.actamat.2014.08.008 [10] ISIK M I, KOSTKA A, YARDLEY V A, et al. The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels[J]. Acta Materialia, 2015, 90: 94-104. doi: 10.1016/j.actamat.2015.01.027 [11] AGHAJANI A, RICHTER F, SOMSEN C, et al. On the formation and growth of Mo-rich Laves phase particles during long-term creep of a 12% chromium tempered martensite ferritic steel[J]. Scripta Materialia, 2009, 61(11): 1068-1071. doi: 10.1016/j.scriptamat.2009.08.031 [12] DIMMLER G, WEINERT P, KOZESCHNIK E, et al. Quantification of the Laves phase in advanced 9-12% Cr steels using a standard SEM[J]. Materials Characterization, 2003, 51(5): 341-352. doi: 10.1016/j.matchar.2004.02.003 [13] LI M M, CHEN W Y. Microstructure-based prediction of thermal aging strength reduction factors for grade 91 ferritic-martensitic steel[J]. Materials Science and Engineering:A, 2020, 798: 140116. doi: 10.1016/j.msea.2020.140116 [14] XU Y T, NIE Y H, WANG M J, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging[J]. Acta Materialia, 2017, 131: 110-122. doi: 10.1016/j.actamat.2017.03.045 [15] TKACHEV E, BELYAKOV A, KAIBYSHEV R. Creep strength breakdown and microstructure in a 9%Cr steel with high B and Low N contents[J]. Materials Science and Engineering:A, 2020, 772: 138821. doi: 10.1016/j.msea.2019.138821 [16] CHEN S H, RONG L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel[J]. Journal of Nuclear Materials, 2015, 459: 13-19. doi: 10.1016/j.jnucmat.2015.01.004 [17] PHILIPPE T, VOORHEES P W. Ostwald ripening in multicomponent alloys[J]. Acta Materialia, 2013, 61(11): 4237-4244. doi: 10.1016/j.actamat.2013.03.049 [18] AGHAJANI A, SOMSEN C, EGGELER G. On the effect of long-term creep on the microstructure of a 12% Chromium tempered martensite ferritic steel[J]. Acta Materialia, 2009, 57(17): 5093-5106. doi: 10.1016/j.actamat.2009.07.010 [19] XU Y T, LI W, WANG M J, et al. Nano-sized MX carbonitrides contribute to the stability of mechanical properties of martensite ferritic steel in the later stages of long-term aging[J]. Acta Materialia, 2019, 175: 148-159. doi: 10.1016/j.actamat.2019.06.012 [20] WANG W, XU G, SONG L L. Long-term stability of precipitated phases in CLAM steel during thermal aging[J]. Journal of Nuclear Materials, 2019, 521: 56-62. doi: 10.1016/j.jnucmat.2019.04.034