Numerical Simulation of Melting Behavior of 2×2 Rod Bundle Structure Based on MPS Algorithm
-
摘要: 以典型压水堆燃料组件2×2棒束结构为研究对象,建立了含定位格架和不含定位格架的棒束三维模型,基于半隐式运动粒子(MPS)算法对严重事故背景下棒束结构的熔化行为进行了数值模拟,分析了定位格架对棒束熔化过程中流道堵塞进程的影响。结果表明:MPS算法能够较好地模拟棒束结构熔化行为,定位格架会加快堆芯的熔化进程和冷却流道的堵塞速度,本文研究结果有利于严重事故下堆芯熔化模型的优化改进。
-
关键词:
- 定位格架 /
- 半隐式运动粒子(MPS)算法 /
- 严重事故
Abstract: Taking the 2 × 2 rod bundle structure of typical pressurized water reactor fuel assembly as the research object, the three-dimensional model of rod bundle with and without positioning grid is established. Based on the semi-implicit moving particle algorithm (MPS), the melting behavior of the rod bundle structure under the background of serious accidents is numerically simulated, and the influence of the positioning grid on the flow channel blocking process in the rod bundle melting process is analyzed. The results show that the MPS algorithm can better simulate the melting behavior of the rod bundle structure, and the positioning grid will speed up the melting process of the core and the blocking speed of the cooling channel. The research results in this paper are beneficial to the optimization and improvement of the core melting model under severe accident.-
Key words:
- Positioning grid /
- MPS /
- Serious accident
-
表 1 燃料组件几何参数
Table 1. Geometric Parameters of Fuel Assembly
参数名 参数值 棒芯高度/mm 104 包壳高度/mm 104 定位格架高度/mm 51.2 棒芯直径/mm 8.0 包壳外径/mm 9.5 定位格架厚度/mm 0.425 表 2 UO2棒芯热工参数
Table 2. Thermal Parameters of UO2 Rod Core
参数名 参数值 定压比热容/(J·kg−1·K−1) 503 热导率/(W·m−1·K−1) 10 潜热/(J·kg−1) 274000 体积释热率/(W·m−3) 517320 熔点/K 3008 密度/(kg·m−3) 8786 运动粘度/(m2·s−1) 7.35×10−5 表 3 锆合金热工参数
Table 3. Thermal Parameters of Zirconium Alloy
参数名 参数值 定压比热容/(J·kg−1·K−1) 350 热导率/(W·m−1·K−1) 36 潜热/(J·kg−1) 190000 熔点/K 2128 密度/(kg·m−3) 6296.16 运动粘度/(m2·s−1) 1.36×10−6 表面张力系数/(N·m−1) 0.002 表 4 数值模拟计算信息
Table 4. Numerical Simulation Calculation Information
计算项 计算信息 计算设备CPU型号 Xeon E5-2630 v4(双处理器) 计算设备内存/GB 128 计算步长/s 0.0001 无定位格架组粒子数 149564 有定位格架组粒子数 173205 并行配置 38 -
[1] 刘丽莉,余红星,陈亮,等. 燃料棒包壳氧化层溶解失效准则研究[J]. 核动力工程,2015, 36(S2): 116-121. [2] LI Y L, CHEN R H, TIAN W X, et al. Numerical investigation on the melting behavior mechanism of fuel rod using MPS-CV method[C]//The 27th International Conference on Nuclear Engineering (ICONE27). Tokyo: The Japan Society of Mechanical Engineers, 2019. [3] KOSHIZUKA S, OKA Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid[J]. Nuclear Science and Engineering, 1996, 123(3): 421-434. doi: 10.13182/NSE96-A24205 [4] 王红燕. 基于拉格朗日方法的熔化行为数值模拟研究[D]. 上海: 上海交通大学, 2015. [5] 李勇霖,陈荣华,蔡庆航,等. 燃料棒熔化行为的粒子网格混合法模拟研究(英文)[J]. 核动力工程,2019, 40(S2): 51-56. [6] LI Y L, CHEN R H, GUO K L, et al. Numerical analysis of the dissolution of uranium dioxide by molten Zircaloy using MPS method[J]. Progress in Nuclear Energy, 2017, 100: 1-10. doi: 10.1016/j.pnucene.2017.05.022 [7] CHEN R H, CHEN L, GUO K L, et al. Numerical analysis of the melt behavior in a fuel support piece of the BWR by MPS[J]. Annals of Nuclear Energy, 2017, 102: 422-439. doi: 10.1016/j.anucene.2017.01.007 [8] CHEN R H, LI Y L, GUO K L, et al. Numerical investigation on the dissolution kinetics of ZrO2 by molten Zircaloy using MPS method[J]. Nuclear Engineering and Design, 2017, 319: 117-125. doi: 10.1016/j.nucengdes.2017.05.002 [9] 朱影子, 王红燕, 熊进标. 移动粒子半隐式法在燃料熔化的改进和运用[C]//第十五届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室学术年会论文集. 荣成: 中国核学会, 2017: 919-924. [10] KONDO M, KOSHIZUKA S, SUZUKI K, et al. Surface tension model using inter-particle force in particle method[C]//ASME/JSME 2007 5th Joint Fluids Engineering Conference. San Diego: ASME, 2007. [11] HU H, ARGYROPOULOS S A. Mathematical modelling of solidification and melting: a review[J]. Modelling and Simulation in Materials Science and Engineering, 1996, 4(4): 371-396. doi: 10.1088/0965-0393/4/4/004 [12] KAWAHARA T, OKA Y. Ex-vessel molten core solidification behavior by moving particle semi-implicit method[J]. Journal of Nuclear Science and Technology, 2012, 49(12): 1156-1164. doi: 10.1080/00223131.2012.740944 [13] 乔磊. 基于结构化网格的5×5燃料组件流场CFD研究[D]. 广州: 华南理工大学, 2015.