高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深槽型主泵机械密封液膜特性分析

金乐 王岩 崔怀明 朱向东 张超南 毛远帆

金乐, 王岩, 崔怀明, 朱向东, 张超南, 毛远帆. 深槽型主泵机械密封液膜特性分析[J]. 核动力工程, 2022, 43(5): 203-210. doi: 10.13832/j.jnpe.2022.05.0203
引用本文: 金乐, 王岩, 崔怀明, 朱向东, 张超南, 毛远帆. 深槽型主泵机械密封液膜特性分析[J]. 核动力工程, 2022, 43(5): 203-210. doi: 10.13832/j.jnpe.2022.05.0203
Jin Le, Wang Yan, Cui Huaiming, Zhu Xiangdong, Zhang Chaonan, Mao Yuanfan. Analysis of Liquid Film Characteristics of Deep-groove Reactor Coolant Pump Mechanical Seal[J]. Nuclear Power Engineering, 2022, 43(5): 203-210. doi: 10.13832/j.jnpe.2022.05.0203
Citation: Jin Le, Wang Yan, Cui Huaiming, Zhu Xiangdong, Zhang Chaonan, Mao Yuanfan. Analysis of Liquid Film Characteristics of Deep-groove Reactor Coolant Pump Mechanical Seal[J]. Nuclear Power Engineering, 2022, 43(5): 203-210. doi: 10.13832/j.jnpe.2022.05.0203

深槽型主泵机械密封液膜特性分析

doi: 10.13832/j.jnpe.2022.05.0203
详细信息
    作者简介:

    金 乐(1984—),男,高级工程师,博士,现从事先进核能用泵相关的关键技术、零部件、原材料的国产化及自主化研发工作,E-mail: le.jin@sec-ksb.com

  • 中图分类号: TL353+.12

Analysis of Liquid Film Characteristics of Deep-groove Reactor Coolant Pump Mechanical Seal

  • 摘要: 采用结合三维有限元分析与基于经典摩擦理论的密封液膜流场分析相结合的方法,针对某新型核反应堆冷却剂泵(简称核主泵)机械密封的6种密封面方案进行分析研究,对比各方案的液膜厚度、接触载荷、名义磨损率、低压泄漏率等关键参数。计算结果表明,6 mm槽宽的设计方案是一组性能较为平衡的设计,其密封面的性能输出特征与某进口成熟机械密封类似且略优于进口型号;带有低压补偿的直线槽方案能够大幅延长密封面寿命,但同时带来了更高的低压泄漏率。

     

  • 图  1  密封面结构示意图

    Figure  1.  Schematic Diagram of Sealing Surface Structures

    图  2  密封液膜力平衡示意图

    Figure  2.  Schematic Diagram of Sealing Liquid Film Force Equilibrium

    图  3  进口型机封液膜内压力分布

    x—密封面液膜宽度;y— 密封面液膜高度

    Figure  3.  Pressure Distribution in Liquid Film of Imported Mechanical Seal

    图  4  新机封第3级密封液膜内压力分布

    Figure  4.  Pressure Distribution in the Third Stage Sealing Liquid Film of New Mechanical Seal

    图  5  不同密封面设计方案在稳态下的液膜最小厚度

    Figure  5.  Minimum Thickness of Liquid Film under Steady State with Different Sealing Surface Designs

    图  6  不同密封面设计方案在稳态下的密封液膜平均厚度

    Figure  6.  Average Thickness of Sealing Liquid Film under Steady State with Different Sealing Surface Designs

    图  7  不同密封面设计方案在稳态下的最大表面接触载荷

    Figure  7.  Maximum Surface Contact Load under Steady State with Different Sealing Surface Designs

    图  8  不同密封面设计方案在稳态下的名义磨损率

    Figure  8.  Nominal Wear Rate under Steady State with Different Sealing Surface Designs

    图  9  不同密封面设计方案在稳态下的低压泄漏率

    Figure  9.  Low-pressure Leakage Rate under Steady State with Different Sealing Surface Designs

    表  1  密封面设计方案

    Table  1.   Design Scheme of Sealing Surface

    方案
    编号
    直线槽
    数量/根
    密封带
    槽度/mm
    槽型
    2125直线槽
    3145
    4126
    5146
    6126直线槽+局部
    结构优化
    7146
    下载: 导出CSV

    表  2  机械密封的级间压力设计 MPa

    Table  2.   Interstage Pressure Design of Mechanical Seal

    级间位置进口型机封新型机封
    第1级密封面前15.515.5
    第1级密封面后、第2级密封面前9.38.5
    第2级密封面后、第3级密封面前3.11.6
    第3级密封面后0.10.1
    下载: 导出CSV

    表  3  根据Tallian公式判断润滑状态的依据

    Table  3.   Basis of Judging the Lubrication State Based on the Tallian Formula

    $ \lambda $取值润滑状态磨损特征
    $ \lambda \geqslant 3 $全膜润滑无磨损
    $ 3 > \lambda \geqslant 1 $混合润滑轻微磨损
    $ \lambda < 1 $边界润滑严重磨损
    下载: 导出CSV

    表  4  根据Tallian公式计算的$ \mathbf{\lambda } $数值

    Table  4.   $ \mathbf{\lambda } $ Calculated by the Tallian Formula

    方案编号第1、2级液膜第3级液膜
    1 (进口型机封)6.155.28
    26.134.99
    36.294.95
    48.685.70
    59.405.74
    611.447.04
    714.457.67
    下载: 导出CSV
  • [1] DENG X. Reactor coolant pump equipment technical specification[Z]. Chengdu: Nuclear Power Institute of China, 2016.
    [2] XING J, SONG D Y, WU Y X. HPR1000: advanced pressurized water reactor with active and passive safety[J]. Engineering, 2016, 2(1): 79-87. doi: 10.1016/J.ENG.2016.01.017
    [3] BRECHT B, BROSS S. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors[J]. Kerntechnik, 2016, 81(2): 177-184. doi: 10.3139/124.110682
    [4] 邢继, 吴琳. 中国自主先进压水堆技术“华龙一号”[M]. 北京: 科学出版社, 2020: 75-83.
    [5] MARTINSON A R. Design, development and testing of large-diameter, high-pressure seals for nuclear-reactor, primary-coolant pumps - a challenge to the pump manufacturer[J]. Lubrication Engineering, 1980, 36(6): 325-340.
    [6] LEBECK A O. Principles and design of mechanical face seals[M]. New York, Chichester, Brisbane, Toronto, Singapore: A Wiley-Interscience Publication, 1991: 667-674
    [7] FUJITA T, SOGABE T, TODOROKI T, et al. Development of rotary shaft seals for primary coolant pumps for nuclear reactors[J]. Tribology Transactions, 1989, 32(1): 16-29. doi: 10.1080/10402008908981857
    [8] DJAMAÏ A, BRUNETIÈRE N, TOURNERIE B. Numerical modeling of thermohydrodynamic mechanical face seals[J]. Tribology Transactions, 2010, 53(3): 414-425. doi: 10.1080/10402000903350612
    [9] FENG X D, MA Y, HUANG B. Numerical prediction and experimental study on the waviness mechanical seal[C]//Proceedings of the ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. San Francisco: American Society of Mechanical Engineers, 2019.
    [10] 王玉明,黄伟峰,李永健. 核电站一回路用机械密封[J]. 摩擦学学报,2011, 31(4): 408-416.
    [11] KEY W E, SALANT R F, PAYVAR P, et al. Analysis of a mechanical seal with deep hydropads[J]. Tribology Transactions, 1989, 32(4): 481-489. doi: 10.1080/10402008908981916
    [12] LAPRESTI M, SKOCIK M, GAUTHIER J L. Reactor coolant pump seal enhancements including post-fukushima solutions[C]. In Proceeding of TopSafe 2017, Vienna, 2017.
    [13] RHODES D B, HILL R C, WENSEL R G. Reactor coolant pump shaft seal stability during station blackout: NUREG/CR-4821[R].Washington, D.C.:Idaho National Engineering Laboratory, 1987.
    [14] VAN LOENHOUT G. Changing out hydrostatic RCP seals to hydrodynamic N-seals with a passive abeyance seal: a combined safety enhancement and reliability improvement approach[C]//Proceedings of the 4th PLIM and PLEX Conference. Brussels: 2013.
    [15] VAN LOENHOUT G, OLSON A J, OLLIVER J R. Improving reactor coolant pump seal reliability at dominion Surry nuclear power station[C]//Proceedings of the 21st Sealing conference BHR Group. Milton Keynes: BHR Group, 2011.
    [16] 王晓雪,刘莹,李京浩,等. 核主泵用动静压波度机械密封机理[J]. 机械工程学报,2010, 46(24): 131-135,142.
    [17] 刘伟. 波度端面机械密封多场耦合机理研究[D]. 北京: 清华大学, 2014.
    [18] 楼建铭,孟祥铠,李纪云,等. 波度端面机械密封热流体动力润滑性能分析[J]. 润滑与密封,2016, 41(2): 47-52,64. doi: 10.3969/j.issn.0254-0150.2016.02.010
    [19] 周平,戴恒震,金洙吉,等. 周向波度密封环预变形平面研磨加工中的变形分析[J]. 机械工程学报,2015, 51(11): 171-176.
    [20] KSB SE. KSB mechanical seals[EB/OL].(2021-07-20) [2022-04-10].https://www.ksb.com/en-in/product/spare-parts/mechanical-seals
    [21] ETSION I, BURSTEIN L. A model for mechanical seals with regular microsurface structure[J]. Tribology Transactions, 1996, 39(3): 677-683. doi: 10.1080/10402009608983582
    [22] ETSION I, KLIGERMAN Y, HALPERIN G. Analytical and experimental investigation of laser-textured mechanical seal faces[J]. Tribology Transactions, 1999, 42(3): 511-516. doi: 10.1080/10402009908982248
    [23] JIN L. Ultra-low friction of sintered silicon carbide in aqueous tribological environment of mechanical seals[M]. Aachen: Shaker Verlag, 2018: 4-7.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  78
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2022-05-13
  • 刊出日期:  2022-10-12

目录

    /

    返回文章
    返回