Analysis of Liquid Film Characteristics of Deep-groove Reactor Coolant Pump Mechanical Seal
-
摘要: 采用结合三维有限元分析与基于经典摩擦理论的密封液膜流场分析相结合的方法,针对某新型核反应堆冷却剂泵(简称核主泵)机械密封的6种密封面方案进行分析研究,对比各方案的液膜厚度、接触载荷、名义磨损率、低压泄漏率等关键参数。计算结果表明,6 mm槽宽的设计方案是一组性能较为平衡的设计,其密封面的性能输出特征与某进口成熟机械密封类似且略优于进口型号;带有低压补偿的直线槽方案能够大幅延长密封面寿命,但同时带来了更高的低压泄漏率。Abstract: By combining the three-dimensional finite element analysis method and the sealing liquid film flow field analysis based on the classical friction theory, six sealing surface schemes of the mechanical seal of a new type of nuclear reactor coolant pump (referred to as the nuclear main pump) are analyzed and studied. The key parameters such as liquid film thickness, contact load, nominal wear rate, and low pressure leakage rate of each scheme are compared. The calculation results show that the design scheme with a groove width of 6 mm is a set of designs with relatively balanced performance, and the performance output characteristics of the sealing surface are similar to that of an imported mature mechanical seal and slightly better than that of the imported model; The linear groove scheme with low-pressure compensation can greatly prolong the service life of the sealing surface, but also bring a higher low-pressure leakage rate.
-
Key words:
- Reactor coolant pump /
- Mechanical seal /
- Hydrodynamic pressure /
- Linear groove /
- Groove optimization
-
表 1 密封面设计方案
Table 1. Design Scheme of Sealing Surface
方案
编号直线槽
数量/根密封带
槽度/mm槽型 2 12 5 直线槽 3 14 5 4 12 6 5 14 6 6 12 6 直线槽+局部
结构优化7 14 6 表 2 机械密封的级间压力设计 MPa
Table 2. Interstage Pressure Design of Mechanical Seal
级间位置 进口型机封 新型机封 第1级密封面前 15.5 15.5 第1级密封面后、第2级密封面前 9.3 8.5 第2级密封面后、第3级密封面前 3.1 1.6 第3级密封面后 0.1 0.1 表 3 根据Tallian公式判断润滑状态的依据
Table 3. Basis of Judging the Lubrication State Based on the Tallian Formula
$ \lambda $取值 润滑状态 磨损特征 $ \lambda \geqslant 3 $ 全膜润滑 无磨损 $ 3 > \lambda \geqslant 1 $ 混合润滑 轻微磨损 $ \lambda < 1 $ 边界润滑 严重磨损 表 4 根据Tallian公式计算的
$ \mathbf{\lambda } $ 数值Table 4.
$ \mathbf{\lambda } $ Calculated by the Tallian Formula方案编号 第1、2级液膜 第3级液膜 1 (进口型机封) 6.15 5.28 2 6.13 4.99 3 6.29 4.95 4 8.68 5.70 5 9.40 5.74 6 11.44 7.04 7 14.45 7.67 -
[1] DENG X. Reactor coolant pump equipment technical specification[Z]. Chengdu: Nuclear Power Institute of China, 2016. [2] XING J, SONG D Y, WU Y X. HPR1000: advanced pressurized water reactor with active and passive safety[J]. Engineering, 2016, 2(1): 79-87. doi: 10.1016/J.ENG.2016.01.017 [3] BRECHT B, BROSS S. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors[J]. Kerntechnik, 2016, 81(2): 177-184. doi: 10.3139/124.110682 [4] 邢继, 吴琳. 中国自主先进压水堆技术“华龙一号”[M]. 北京: 科学出版社, 2020: 75-83. [5] MARTINSON A R. Design, development and testing of large-diameter, high-pressure seals for nuclear-reactor, primary-coolant pumps - a challenge to the pump manufacturer[J]. Lubrication Engineering, 1980, 36(6): 325-340. [6] LEBECK A O. Principles and design of mechanical face seals[M]. New York, Chichester, Brisbane, Toronto, Singapore: A Wiley-Interscience Publication, 1991: 667-674 [7] FUJITA T, SOGABE T, TODOROKI T, et al. Development of rotary shaft seals for primary coolant pumps for nuclear reactors[J]. Tribology Transactions, 1989, 32(1): 16-29. doi: 10.1080/10402008908981857 [8] DJAMAÏ A, BRUNETIÈRE N, TOURNERIE B. Numerical modeling of thermohydrodynamic mechanical face seals[J]. Tribology Transactions, 2010, 53(3): 414-425. doi: 10.1080/10402000903350612 [9] FENG X D, MA Y, HUANG B. Numerical prediction and experimental study on the waviness mechanical seal[C]//Proceedings of the ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. San Francisco: American Society of Mechanical Engineers, 2019. [10] 王玉明,黄伟峰,李永健. 核电站一回路用机械密封[J]. 摩擦学学报,2011, 31(4): 408-416. [11] KEY W E, SALANT R F, PAYVAR P, et al. Analysis of a mechanical seal with deep hydropads[J]. Tribology Transactions, 1989, 32(4): 481-489. doi: 10.1080/10402008908981916 [12] LAPRESTI M, SKOCIK M, GAUTHIER J L. Reactor coolant pump seal enhancements including post-fukushima solutions[C]. In Proceeding of TopSafe 2017, Vienna, 2017. [13] RHODES D B, HILL R C, WENSEL R G. Reactor coolant pump shaft seal stability during station blackout: NUREG/CR-4821[R].Washington, D.C.:Idaho National Engineering Laboratory, 1987. [14] VAN LOENHOUT G. Changing out hydrostatic RCP seals to hydrodynamic N-seals with a passive abeyance seal: a combined safety enhancement and reliability improvement approach[C]//Proceedings of the 4th PLIM and PLEX Conference. Brussels: 2013. [15] VAN LOENHOUT G, OLSON A J, OLLIVER J R. Improving reactor coolant pump seal reliability at dominion Surry nuclear power station[C]//Proceedings of the 21st Sealing conference BHR Group. Milton Keynes: BHR Group, 2011. [16] 王晓雪,刘莹,李京浩,等. 核主泵用动静压波度机械密封机理[J]. 机械工程学报,2010, 46(24): 131-135,142. [17] 刘伟. 波度端面机械密封多场耦合机理研究[D]. 北京: 清华大学, 2014. [18] 楼建铭,孟祥铠,李纪云,等. 波度端面机械密封热流体动力润滑性能分析[J]. 润滑与密封,2016, 41(2): 47-52,64. doi: 10.3969/j.issn.0254-0150.2016.02.010 [19] 周平,戴恒震,金洙吉,等. 周向波度密封环预变形平面研磨加工中的变形分析[J]. 机械工程学报,2015, 51(11): 171-176. [20] KSB SE. KSB mechanical seals[EB/OL].(2021-07-20) [2022-04-10].https://www.ksb.com/en-in/product/spare-parts/mechanical-seals [21] ETSION I, BURSTEIN L. A model for mechanical seals with regular microsurface structure[J]. Tribology Transactions, 1996, 39(3): 677-683. doi: 10.1080/10402009608983582 [22] ETSION I, KLIGERMAN Y, HALPERIN G. Analytical and experimental investigation of laser-textured mechanical seal faces[J]. Tribology Transactions, 1999, 42(3): 511-516. doi: 10.1080/10402009908982248 [23] JIN L. Ultra-low friction of sintered silicon carbide in aqueous tribological environment of mechanical seals[M]. Aachen: Shaker Verlag, 2018: 4-7.