Research on the Application of Laser Additive Manufacturing in Reactor Internals
-
摘要: 针对钴基合金手工钨级氩弧焊(TIG)堆焊出现的质量问题,开展了钴基合金增材制造工艺研究,尤其是激光增材制造工艺参数的优化研究,然后对钴基合金增材制造层进行一系列的硬度、耐磨性能、耐腐蚀性能等试验研究,并与手工TIG堆焊层性能进行对比。对比结果表明,激光增材制造层的组织更加细化,硬度更加均匀,耐磨性与耐腐蚀性能均优于手工TIG堆焊层。Abstract: In view of the quality problems of manual TIG overlaying of cobalt-based alloy, the additive manufacturing process of cobalt-based alloy is studied, especially the optimization of laser additive manufacturing process parameters. Then a series of experiments, including hardness, wear resistance, corrosion resistance etc., are carried out on the cobalt-based alloy additive manufacturing layer and compared with the manual TIG surfacing layer. The results show that the microstructure of the laser additive manufacturing layer is more refined, the hardness is more uniform, the wear resistance and corrosion resistance are better than that of the manual TIG surfacing layer.
-
表 1 ERCoCr-A粉末主要化学成分
Table 1. Main Chemical Composition of ERCoCr-A Powder
元素 C Cr W Ni Mo Mn Si Fe Co 质量分数/% 0.97 28.91 3.92 2.05 0.31 0.05 0.90 1.85 余量 表 2 单道工艺参数
Table 2. Single Pass Process Parameters
功率/W 扫描速度/
(mm·s−1)送粉速率/
(g·min−1)气氛 3000 10 10 空气环境、氩气环境 2500 15 10 2000 10 10 2000 5 10 1800 6 10 2500 10 10 表 3 多道搭接工艺参数
Table 3. Multi Pass Overlapping Process Parameters
功率/W 扫描速度/
(mm·s−1)送粉速率/
(g·min−1)搭接率/% 扫描方式 2000 10 10 50 长边往复 2500 10 10 50 长边往复 3000 10 10 50 长边往复 2000 5 10 50 长边往复 2000 15 10 50 长边往复 2500 10 10 60 长边往复 2500 10 10 40 长边往复 2500 10 14 50 长边往复 2500 10 20 50 长边往复 表 4 钴基合金熔覆层化学元素含量
Table 4. Chemical Element Content of Cobalt-based Alloy Cladding Layer
样品 质量分数/% Co Cr C Fe W Ni Si Mo Mn S P 手工TIG堆焊层 58.30 28.10 1.30 2.10 4.10 2.30 1.40 0.20 0.10 0.20 0 激光增材制造层 58.60 30.38 1.24 2.16 4.10 1.84 0.72 0.66 0.18 0.04 0.08 -
[1] DAVIS J R, JOSEPH R. Nickel, cobalt, and their alloys[M]. Materials Park, OH: ASM International, 2000: 345-370. [2] DÍAZ E, AMADO J M, MONTERO J, et al. Comparative study of co-based alloys in repairing low Cr-Mo steel components by laser cladding[J]. Physics Procedia, 2012, 39: 368-375. doi: 10.1016/j.phpro.2012.10.050 [3] GRAINGER S, BLUNT J. Engineering coatings: design and application[M]. 2nd ed. Cambridge: Abington Publish, 1998: 123-125. [4] 王庆田,蒋兴钧,郭宝超,等. “华龙一号”核电厂堆内构件钴基合金堆焊优化设计[J]. 中国核电,2020, 13(1): 17-22. [5] 王庆田,许斌,何大明,等. 秦山核电二期扩建工程反应堆堆内构件钴基合金堆焊工艺改进[J]. 电焊机,2010, 40(2): 42-46. doi: 10.3969/j.issn.1001-2303.2010.02.010