Research and Development Progress and Application Prospect of Nuclear Fuels for Commercial Pressurized Water Reactors
-
摘要: 压水堆(PWR)是目前核电厂反应堆的主力堆型,而核燃料是反应堆的能量源泉和放射性裂变物质的主要来源,关乎核电厂的经济性和安全性。本文对当前国际上面向商用PWR应用研发的掺杂UO2燃料、高铀密度燃料、微封装燃料和金属燃料的性能特点、技术状态及前景进行了归纳和评价。在掺杂UO2燃料中,大晶粒燃料具有较高的技术成熟度,将在PWR实现大规模商用;高铀密度燃料和金属燃料在高温水腐蚀氧化问题以及事故下的行为仍待研究解决;具有极致安全的微封装燃料更适合特殊用途的小型反应堆。应协同开展先进燃料组件设计、建立设计准则以及研发高保真的性能分析技术等,以充分发挥新型燃料的可靠性及高燃耗优势。
-
关键词:
- 压水堆(PWR) /
- 耐事故燃料(ATF) /
- 高铀密度燃料 /
- 微封装燃料 /
- 金属燃料
Abstract: Pressurized water reactor (PWR) is the main reactor type of nuclear power plant at present, and nuclear fuel is the energy source of reactor and the main source of fission products, which is related to the economy and safety of nuclear power plant. This paper summarizes and evaluates the performance characteristics, technical status and prospects of doped UO2 fuel, high density fuel, micro-capsulated fuel and metal fuel currently developed for commercial PWR applications. Among these fuels, the large grain fuel has high technology maturity and is expected to be commercially available in PWR in the near future; the corrosion and oxidation of high density fuel and metal fuel in high temperature water and the behavior under accidents still need to be studied and solved; micro-encapsulated fuel with extremely safety is more suitable for small reactors for special purposes. Research and development of advanced fuel assemblies, design criteria and high fidelity performance analysis technology shall be carried out in coordination to maximize the reliability and high burnup advantages of new fuels. -
表 1 高铀密度燃料与UO2燃料的主要物理性能对比
Table 1. Comparison of Main Physical Properties between High Uranium Density Fuel and UO2 Fuel
燃料 U3Si2 UC UN UO2 理论密度/(g·cm−3) 12.2 13.6 14.4 10.96 铀密度/(g·cm−3) 13.3 12.95 13.63 9.66 熔点/K 1665 2670~2880 3053① ~3133 热膨胀系数/(10−6K−1) 14.6~15.2(273~1223 K) 11.2(300~1273 K)
12.4(1273~2273 K)9.9(290~1870 K)
8.61(290~1273 K)7.8(373 K)
12.83(298~2273 K)热导率/(W·m−1·K−1) 13.0~22.3 (673~1473 K) 21~19(1000~2500 K) 19~25(600~1400 K) 6~2.5(673~1473 K) 注:①在0.1 MPa N2分压中的熔点 表 2 国外主要的PWR燃料组件
Table 2. Main PWR Fuel Assemblies Abroad
研发国家 组件名称 燃料类型 排列方式 组件设计燃耗/[GW·d·t−1(U)] 投入使用时间 美国 ROBUST UO2/ZIRLO 17×17 55 1997年 AP1000 UO2/ZIRLO 17×17 60 2018年 法国 AFA3G UO2/M5 17×17 60 1998年 GAIA Cr2O3掺杂UO2/M5(或Q12) 17×17 预计2025 年 俄罗斯 TVS-2M UO2(带中孔)/E110 六棱柱 60 2006年 TVS-K 掺杂Al2O3 + SiO2的UO2/E110 17×17 68 韩国 PLUS7 UO2/ZIRLO 16×16 55 2006年 ACE7 UO2/HANA 17×17 55 HIPER16 UO2/ZIRLO(或HANA) 17×17或16×16 55 表 3 目前主要的先进燃料技术状态及前景对比
Table 3. Comparison of Current Status and Prospects of Current Major Advanced Fuel Technologies
燃料 主要优势 应用商用PWR的主要难点 研制状态及应用前景 大晶粒UO2燃料 ①裂变产物包容能力强;
②肿胀量低;
③抗PCMI性能优异①燃料棒轴向生长稍大;
②中子经济性稍差①完成先导燃料棒辐照考验;
②已批量化入堆辐照;
③有望近期实现大规模商用高热导率UO2燃料 ①热导率高;
②热安全裕量较大①中子经济性较差;
②制造成本较高①已完成材料级辐照;
②技术成熟度较低硅化物燃料 ①铀密度高;
②热导率高;
③裂变气体释放率低①熔点低;
②耐高温水腐蚀氧化性差①完成先导燃料棒辐照考验;
②进入先导组件辐照试验阶段碳化物燃料 ①制造成本较高;
②耐高温水腐蚀氧化性差;
③辐照肿胀率高;
④与包壳材料的相容性差耐高温水腐蚀氧化性差等问题难以克服,短期内难以在PWR商用 氮化物燃料 ①制造成本高;
②耐高温水腐蚀氧化性差①已有材料级的辐照考验;
②耐高温水腐蚀氧化性差的问题目前难以克服;
③近期商用难度较大微封装燃料 ①安全性高;
②裂变气体释放率低①制造成本高;
②铀装量低;
③铀回收困难①已有材料级的辐照考验;
②在大型商用PWR中的适用性低;
③可作为特殊用途小型反应堆的燃料金属燃料 ①铀密度高;
②热导率高①耐高温水腐蚀氧化性差;
②辐照肿胀大①已有先导组件辐照试验;
②中远期可实现商用 -
[1] 庞华,辛勇,岳慧芳,等. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报,2022, 36(4): 5-12. [2] COOPER M W D, STANEK C R, ANDERSSON D A. The role of dopant charge state on defect chemistry and grain growth of doped UO2[J]. Acta Materialia, 2018, 150: 403-413. doi: 10.1016/j.actamat.2018.02.020 [3] MIDDLEBURGH S C, GRIMES R W, DESAI K H, et al. Swelling due to fission products and additives dissolved within the uranium dioxide lattice[J]. Journal of Nuclear Materials, 2012, 427(1-3): 359-363. doi: 10.1016/j.jnucmat.2012.03.037 [4] OELRICH R, KAROUTAS Z, XU P, et al. Overview of Westinghouse lead EnCore accident tolerant fuel program[C]//Proceedings of Top Fuel 2019. Seattle, USA: American Nuclear Society, 2019: 192-196. [5] REBEYROLLE V, VIOUJARD N, SCHOLER A C, et al. PROtect fuel: the leading E-ATF solution delivered by framatome[C]//Proceedings of Top Fuel 2019. Seattle, USA: American Nuclear Society, 2019: 1-7. [6] Organisation for Economic Co-Operation and Development. State-of-the-art report on light water reactor accident-tolerant fuels: NEA No. 7317[R]. Organisation for Economic Co-Operation and Development, 2018: 209. [7] 长谷川正义, 中岛良绩. 核反应堆材料手册[M]. 孙守仁, 等译. 北京: 中国原子能出版社, 1987: 187. [8] WHITE J T, NELSON A T, DUNWOODY J T, et al. Thermophysical properties of U3Si2 to 1773K[J]. Journal of Nuclear Materials, 2015, 464: 275-280. doi: 10.1016/j.jnucmat.2015.04.031 [9] METZGER K E. Analysis of pellet cladding interaction and creep of U3Si2 fuel for use in light water reactors[D]. Columbia: University of South Carolina, 2016. [10] FENG B, KARAHAN A, KAZIMI M S. Steady-state fuel behavior modeling of nitride fuels in FRAPCON-EP[J]. Journal of Nuclear Materials, 2012, 427(1-3): 30-38. doi: 10.1016/j.jnucmat.2012.04.011 [11] HARP J M, LESSING P A, HOGGAN R E. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation[J]. Journal of Nuclear Materials, 2015, 466: 728-738. doi: 10.1016/j.jnucmat.2015.06.027 [12] VASUDEVAMURTHY G, NELSON A T. Uranium carbide properties for advanced fuel modeling – a review[J]. Journal of Nuclear Materials, 2022, 558: 153145. doi: 10.1016/j.jnucmat.2021.153145 [13] HARP J M, LESSING P A, HOGGAN R E. Uranium silicide fabrication for use in LWR accident tolerant fuel[J]. Transactions of the American Nuclear Society, 2014, 110(1): 990-993. [14] REBAK R B. Alternative fuels to urania[M]. REBAK R B. Accident-Tolerant Materials for Light Water Reactor Fuels. Amsterdam: Elsevier, 2020: 157-170. [15] NELSON A T, MIGDISOV A, WOOD E S, et al. U3Si2 behavior in H2O environments: part II, pressurized water with controlled redox chemistry[J]. Journal of Nuclear Materials, 2018, 500: 81-91. doi: 10.1016/j.jnucmat.2017.12.026 [16] KHATIB-RAHBAR M, KRALL A, YUAN Z, et al. Review of accident tolerant fuel concepts with implications to severe accident progression and radiological releases: NUREG/CR-7282, ERI/NRC 21-203[R]. Rockville: Energy Research, Inc., 2021. [17] Office of NEPA Policy and Compliance. CX-025514: Continuation of Work for the Accident Tolerant Fuel Project 2021-2025[EB/OL]. (2021-09-29) [2022-07-01]. https://www.energy.gov/sites/default/files/2022-03/CX-025514.pdf. [18] 弗罗斯特B R T. 材料科学与技术丛书(第10A卷): 核材料[M]. 周邦新, 等译. 北京: 科学出版社, 1999: 195. [19] GONZALES A, WATKINS J K, WAGNER A R, et al. Challenges and opportunities to alloyed and composite fuel architectures to mitigate high uranium density fuel oxidation: uranium silicide[J]. Journal of Nuclear Materials, 2021, 560: 153502. [20] ARAI Y. Nitride fuel[J]. Comprehensive Nuclear Materials, 2012, 3: 41-54. [21] JOLKKONEN M, MALKKI P, JOHNSON K, et al. Uranium nitride fuels in superheated steam[J]. Journal of Nuclear Science and technology, 2017, 54(5): 513-519. doi: 10.1080/00223131.2017.1291372 [22] SNEAD L L, VENNERI F, KIM Y, et al. Fully ceramic microencapsulated fuels: a transformational technology for present and next generation reactors[J]. ANS Transactions, 2011, 104: 6. [23] 李冠兴,周邦新,肖岷,等. 中国新一代核能核燃料总体发展战略研究[J]. 中国工程科学,2019, 21(1): 6-11. [24] BRAGG-SITTON S. Development of advanced accident-tolerant fuels for commercial LWRs[J]. Nuclear News, 2014, 57: 83-91.
计量
- 文章访问数: 746
- HTML全文浏览量: 190
- PDF下载量: 243
- 被引次数: 0