高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水平窄矩形通道内空气-水两相流动中气弹运动特性研究

刘安泰 程林海 谷海峰 阎昌琪 孟兆明 龚随军

刘安泰, 程林海, 谷海峰, 阎昌琪, 孟兆明, 龚随军. 水平窄矩形通道内空气-水两相流动中气弹运动特性研究[J]. 核动力工程, 2022, 43(6): 24-29. doi: 10.13832/j.jnpe.2022.06.0024
引用本文: 刘安泰, 程林海, 谷海峰, 阎昌琪, 孟兆明, 龚随军. 水平窄矩形通道内空气-水两相流动中气弹运动特性研究[J]. 核动力工程, 2022, 43(6): 24-29. doi: 10.13832/j.jnpe.2022.06.0024
Liu Antai, Cheng Linhai, Gu Haifeng, Yan Changqi, Meng Zhaoming, Gong Suijun. Study on Slug Characteristics of Air-water Two-phase Flow in Horizontal Narrow Rectangular Channel[J]. Nuclear Power Engineering, 2022, 43(6): 24-29. doi: 10.13832/j.jnpe.2022.06.0024
Citation: Liu Antai, Cheng Linhai, Gu Haifeng, Yan Changqi, Meng Zhaoming, Gong Suijun. Study on Slug Characteristics of Air-water Two-phase Flow in Horizontal Narrow Rectangular Channel[J]. Nuclear Power Engineering, 2022, 43(6): 24-29. doi: 10.13832/j.jnpe.2022.06.0024

水平窄矩形通道内空气-水两相流动中气弹运动特性研究

doi: 10.13832/j.jnpe.2022.06.0024
基金项目: 国家重点研发计划(2020YFB1901401)
详细信息
    作者简介:

    刘安泰(1996—),男,博士研究生,主要从事反应堆热工水力方面的研究,E-mail: antai_liu_v@163.com

    通讯作者:

    谷海峰,E-mail: guhaifeng@hrbeu.edu.cn

  • 中图分类号: TL33

Study on Slug Characteristics of Air-water Two-phase Flow in Horizontal Narrow Rectangular Channel

  • 摘要: 气弹速度和液膜厚度作为弹状流工况下的关键参数,在传热分析和力学分析中具有重要意义。本文以空气-水为介质,采用高速摄影机和印刷电路板式(PCB)液膜厚度传感器,对高1.9 mm×宽68 mm的水平窄矩形通道内气弹运动特性进行研究。液相雷诺数(Rel)<2500,矩形通道内为层流区;Rel≥2500,矩形通道内为湍流区,基于气-液两相混合速度分别拟合了气弹运动速度的预测关系式,结果表明,层流区分布系数(C0)可采用Ishii 关系式计算且漂移速度为0;而湍流区C0为1.0。当气弹雷诺数(Reb)<3100时,气弹底部液膜厚度(δb)随毛细管数的增大而增大;而在Reb≥3100时,δb表现出波动性。现有的δb预测关系式不适用于窄矩形通道,在考虑通道高宽比的影响下提出了一个新的δb预测关系式,对文献中210个数据进行了验证,预测误差均在±20%内。

     

  • 图  1  实验系统回路示意图

    Figure  1.  Schematic Diagram of Experimental System Loop

    图  2  PCB液膜厚度传感器

    Figure  2.  PCB Liquid Film Thickness Sensor

    图  3  标定曲线

    Figure  3.  Calibration Curve

    图  4  水平窄矩形通道内气弹形状

    Figure  4.  Slug Shape in Horizontal Narrow Rectangular Channel

    图  5  气弹运动速度

    Figure  5.  Slug Velocity

    图  6  气弹液膜厚度时序变化

    Figure  6.  Time Series Variation of Slug Liquid Film Thickness

    图  7  气弹液膜厚度随毛细管数的变化

    Figure  7.  Variation of Slug Liquid Film Thickness with Capillary Number

    图  8  新关系式预测值与实验值对比

    Figure  8.  Comparison between the Predicted Value of the New Relationship and the Experimental Value

  • [1] 谢清清,阎昌琪,曹夏昕,等. 窄矩形通道内单相水阻力特性实验研究[J]. 原子能科学技术,2012, 46(2): 181-185.
    [2] 黄豪杰. 窄微通道内液膜厚度特性及其在沸腾传热中的应用[D]. 重庆: 重庆大学, 2018.
    [3] HIBIKI T, MISHIMA K. Flow regime transition criteria for upward two-phase flow in vertical narrow rectangular channels[J]. Nuclear Engineering and Design, 2001, 203(2-3): 117-131. doi: 10.1016/S0029-5493(00)00306-X
    [4] YUAN P, DENG J, PAN L M, et al. Air-water two-phase flow regime and transition criteria in vertical upward narrow rectangular channels[J]. Progress in Nuclear Energy, 2021, 136: 103750. doi: 10.1016/j.pnucene.2021.103750
    [5] 王洋,阎昌琪,孙立成,等. 竖直窄矩形通道内弹状流中液膜特性研究[J]. 原子能科学技术,2014, 48(1): 33-38. doi: 10.7538/yzk.2014.48.01.0033
    [6] 王洋,阎昌琪,孙立成,等. 竖直窄矩形通道内空气-水两相流中气弹运动速度研究[J]. 原子能科学技术,2013, 47(12): 2202-2207. doi: 10.7538/yzk.2013.47.12.2202
    [7] 闫超星,阎昌琪,孙立成. 倾斜窄矩形通道内弹状流特性的实验研究[J]. 高校化学工程学报,2015, 29(3): 551-556. doi: 10.3969/j.issn.1003-9015.2015.03.008
    [8] LIU A T, YAN C Q, ZHU F Q, et al. Liquid film thickness of vertical upward annular flow in narrow rectangular channel[J]. Chemical Engineering Research and Design, 2021, 175: 10-24. doi: 10.1016/j.cherd.2021.08.011
    [9] MISHIMA K, HIBIKI T, NISHIHARA H. Some characteristics of gas-liquid flow in narrow rectangular ducts[J]. International Journal of Multiphase Flow, 1993, 19(1): 115-124. doi: 10.1016/0301-9322(93)90027-R
    [10] ISHII M. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes: ANL-77-47[R]. USA: ANL, 1977.
    [11] 夏国栋,周芳德,胡明胜. 倾斜上升弹状流中Taylor气泡运动速度研究[J]. 化学工程,1997, 25(5): 36-41.
    [12] ZHENG D H, CHE D F. Experimental study on hydrodynamic characteristics of upward gas–liquid slug flow[J]. International Journal of Multiphase Flow, 2006, 32(10-11): 1191-1218. doi: 10.1016/j.ijmultiphaseflow.2006.05.012
    [13] WANG X, GUO L J, ZHANG X M. An experimental study of the statistical parameters of gas–liquid two-phase slug flow in horizontal pipeline[J]. International Journal of Heat and Mass Transfer, 2007, 50(11-12): 2439-2443. doi: 10.1016/j.ijheatmasstransfer.2006.12.011
    [14] HAN Y, SHIKAZONO N. Measurement of liquid film thickness in micro square channel[J]. International Journal of Multiphase Flow, 2009, 35(10): 896-903. doi: 10.1016/j.ijmultiphaseflow.2009.06.006
    [15] BRETHERTON F P. The motion of long bubbles in tubes[J]. Journal of Fluid Mechanics, 1960, 10(2): 166-188.
    [16] AUSSILLOUS P, QUERE D. Quick deposition of a fluid on the wall of a tube[J]. Physics of Fluids, 2000, 12(10): 2367-2371. doi: 10.1063/1.1289396
    [17] TAYLOR G I. Deposition of a viscous fluid on the wall of a tube[J]. Journal of Fluid Mechanics, 1961, 10(2): 161-165. doi: 10.1017/S0022112061000159
    [18] YOUN Y J, LEE C K, SHIKAZONO N, et al. Theoretical and experimental study on liquid film thicknesses of unsteady slug flows in a capillary tube[J]. International Journal of Multiphase Flow, 2021, 134: 103470. doi: 10.1016/j.ijmultiphaseflow.2020.103470
  • 加载中
图(8)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  94
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-17
  • 修回日期:  2022-07-12
  • 刊出日期:  2022-12-14

目录

    /

    返回文章
    返回