Numerical Simulation of Three-Phase Coupling for High-Temperature Lithium Heat Pipe
-
摘要: 为了研究锂热管的传热机理,推动锂热管在小堆中的应用。采用COMSOL Multiphysics软件,建立了管壁、吸液芯和管内蒸气腔室的固液气三相耦合模型,对热管的温度分布、压力分布和速度分布进行计算。结果表明:当蒸发段的热流从13.9 kW增加到20.8 kW时,管壁温度、蒸气温度、蒸气压力以及吸液芯内部的液体压力、液体轴向速度随着加热功率的增加而增加,蒸气轴向速度随着加热功率的增加先增加后降低。在稳态运行时,管壁温度呈现阶梯形下降,而蒸气温度和压力基本保持不变,表明了锂热管具有良好的等温性。Abstract: To study the heat transfer mechanism of lithium heat pipes and to improve their application in small reactors, a solid-liquid-gas three-phase coupled model of the tube wall, the wick and the vapor chamber inside the tube is developed using COMSOL Multiphysics software. The results show that when the heat flow in the evaporation section increases from 13.9 kW to 20.8 kW, the pipe wall temperature, steam temperature, steam pressure, liquid pressure inside the wick, and liquid axial velocity increase with the increase of heating power, while the steam axial velocity first increases and then decreases with the increase of heating power. In the steady-state operation, the pipe wall temperature decreases step by step, while the vapor temperature and pressure remain basically unchanged, indicating that the lithium heat pipe has good isothermality.
-
Key words:
- High-temperature heat pipe /
- Lithium heat pipe /
- Coupling model /
- Numerical simulation
-
表 1 热管参数
Table 1. Parameters of Heat Pipe
参数 参数值 蒸发段长度/cm 62 冷凝段长度/cm 100 绝热段长度/cm 30 热管总长度/mm 1920 热管外径/mm 25 管壁厚度/mm 3 吸液芯厚度/mm 2 孔隙率 0.3827 -
[1] YAN B H, WANG C, LI L G. The technology of micro heat pipe cooled reactor: a review[J]. Annals of Nuclear Energy, 2020, 135: 106948. doi: 10.1016/j.anucene.2019.106948 [2] 马誉高,刘旻昀,余红星,等. 热管冷却反应堆核热力耦合研究[J]. 核动力工程,2020, 41(4): 191-196. doi: 10.13832/j.jnpe.2020.04.0191 [3] 柴晓明,马誉高,韩文斌,等. 热管堆固态堆芯三维核热力耦合方法与分析[J]. 原子能科学技术,2021, 55(S2): 189-195. [4] 张胤,王成龙,唐思邈,等. 固态热管反应堆模拟装置热工水力特性分析[J]. 原子能科学技术,2021, 55(6): 984-990. doi: 10.7538/yzk.2020.youxian.0463 [5] 刘松涛,袁园,魏宗岚,等. 热管冷却空间反应堆事故特性研究[J]. 核动力工程,2016, 37(5): 119-124. doi: 10.13832/j.jnpe.2016.05.0119 [6] MA Y G, HAN W B, XIE B H, et al. Coupled neutronic, thermal-mechanical and heat pipe analysis of a heat pipe cooled reactor[J]. Nuclear Engineering and Design, 2021, 384: 111473. doi: 10.1016/j.nucengdes.2021.111473 [7] SUN H, TANG S M, WANG C L, et al. Numerical simulation of a small high-temperature heat pipe cooled reactor with CFD methodology[J]. Nuclear Engineering and Design, 2020, 370: 110907. doi: 10.1016/j.nucengdes.2020.110907 [8] 李华琪,江新标,陈立新,等. 空间堆堆芯热管蒸气流动计算方法研究[J]. 核动力工程,2014, 35(6): 37-40. doi: 10.13832/j.jnpe.2014.06.0037 [9] ZUO Z J, FAGHRI A. A network thermodynamic analysis of the heat pipe[J]. International Journal of Heat and Mass Transfer, 1998, 41(11): 1473-1484. doi: 10.1016/S0017-9310(97)00220-2 [10] CAO Y D, FAGHRI A. Transient two-dimensional compressible analysis for high-temperature heat pipes with pulsed heat input[J]. Numerical Heat Transfer, Part A:Applications, 1991, 18(4): 483-502. doi: 10.1080/10407789008944804 [11] BOWMAN W J, HITCHCOCK J E. Transient, compressible heat-pipe vapor dynamics[C]//Proceedings of the 25th ASME National Heat Transfer Conference. New York, USA: ASME, 1988: 329-337. [12] 张红, 杨峻, 庄骏. 热管节能技术[M]. 北京: 化学工业出版社, 2009: 5. [13] 杨世铭, 陶文铨. 传热学[M]. 第四版. 北京: 高等教育出版社, 2006: 591. [14] 刘伟, 范爱武, 黄晓明. 多孔介质传热传质理论与应用[M]. 北京: 科学出版社, 2006: 418. [15] CHI S W. Heat pipe theory and practice[M]. Washington: Hemisphere Publishing Corp, 1976: 242. [16] 沈维道, 童钧耕. 工程热力学[M]. 第四版. 北京: 高等教育出版社, 2007: 12. [17] 陶文铨. 数值传热学[M]. 第二版. 西安: 西安交通大学出版社, 2001: 566. [18] 韩冶,柴宝华,周问,等. 基于多孔介质模型的钾热管数值模拟[J]. 原子能科学技术,2014, 48(1): 49-53. doi: 10.7538/yzk.2014.48.01.0049 [19] COTTER T P. Theory of heat pipes: LA-3246-MS[R]. San Francisco: Los Alamos Scientific Laboratory, 1965.