CFD Calculation and Analysis of Boiling Heat Transfer of Full-length Fuel Bundle with Bent Rod
-
摘要: 采用计算流体动力学(CFD)分析方法模拟了含一根弯曲燃料棒(简称“弯曲棒”)的5×5全长燃料棒束内的沸腾传热现象。基于欧拉两流体模型和改进的壁面沸腾模型进行计算,并基于压水堆子通道和棒束实验( PSBT )基准题中的试验数据对计算方法进行了验证,计算所得截面平均空泡份额与试验数据吻合良好,说明了现有计算方法的可靠性。基于计算结果考察了弯曲棒对棒束通道内流场、温度场、空泡份额等关键参数的影响。研究结果表明,弯曲棒的存在对截面横向流动、流体温度、空泡份额等均未产生显著影响,但弯曲棒表面温度增加,气泡也易发生聚集,增加了发生临界热流密度(CHF)的风险。
-
关键词:
- 燃料棒束 /
- 弯曲 /
- 沸腾 /
- 计算流体动力学(CFD)
Abstract: The boiling heat transfer in a 5 × 5 full-length fuel bundle containing a bent fuel rod is simulated by computational fluid dynamics (CFD) analysis. The calculation is based on the Eulerian-Eulerian two-fluid model and the improved wall boiling model, and the calculation method is verified based on the test data in the PSBT benchmark task. The calculated average void fraction of the cross section is in good agreement with the test data, which indicates the reliability of the existing calculation methods. Based on the calculation results, the effects of bent rod on the flow field, temperature field, void fraction and other key parameters in the bundle channel are investigated. The research results show that the existence of bent fuel rod has no significant impact on the cross section transverse flow, fluid temperature, void fraction, etc., but the increase of the surface temperature of bent fuel rod will also lead to bubble aggregation, which increases the risk of critical heat flux (CHF).-
Key words:
- Fuel bundle /
- Bending /
- Boiling /
- Computational fluid dynamics(CFD)
-
-
[1] 李权,AVRAMOVA M,刘洋华,等. 全长尺寸5×5格架棒束通道两相流动特性研究[J]. 核动力工程,2017, 38(S2): 25-28. [2] 李松蔚,李仲春,杜思佳,等. 带7道格架的5×5棒束两相性能CFD分析[J]. 核动力工程,2019, 40(3): 185-190. doi: 10.13832/j.jnpe.2019.03.0185 [3] TOMIYAMA A, KATAOKA I, ZUN I, et al. Drag coefficients of single bubbles under normal and micro gravity conditions[J]. JSME International Journal Series B:Fluids and Thermal Engineering, 1998, 41(2): 472-479. doi: 10.1299/jsmeb.41.472 [4] BURNS A D, FRANK T, HAMILL I, et al. The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows[C]//5th International Conference on Multiphase Flow. Yokohama, 2004. [5] KURUL N, PODOWSKI M Z. Multidimensional effects in forced convection subcooled boiling[C]//International Heat Transfer Conference 9. Jerusalem, Israel, 1990. [6] COLE R. A photographic study of pool boiling in the region of the critical heat flux[J]. AIChE Journal, 1960, 6(4): 533-538. doi: 10.1002/aic.690060405 [7] KOCAMUSTAFAOGULLARI G, ISHII M. Foundation of the interfacial area transport equation and its closure relations[J]. International Journal of Heat and Mass Transfer, 1995, 38(3): 481-493. doi: 10.1016/0017-9310(94)00183-V [8] HIBIKI T, ISHII M. Active nucleation site density in boiling systems[J]. International Journal of Heat and Mass Transfer, 2003, 46(14): 2587-2601. doi: 10.1016/S0017-9310(03)00031-0 [9] DEL VALLE V H, KENNING D B R. Subcooled flow boiling at high heat flux[J]. International Journal of Heat and Mass Transfer, 1985, 28(10): 1907-1920. doi: 10.1016/0017-9310(85)90213-3 [10] RUBIN A, SCHOEDEL A, AVRAMOVA M. OECD/NRC benchmark based on NUPEC PWR Subchannel and Bundle Tests (PSBT). Volume I: experimental database and final problem specifications: NEA/NSC/DOC(2012)1[Z]. 2012.