高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于统一框架的多物理耦合方案研究与平台开发

钱冠华 于涛 杨涛 赵亚楠 赵鹏程

钱冠华, 于涛, 杨涛, 赵亚楠, 赵鹏程. 基于统一框架的多物理耦合方案研究与平台开发[J]. 核动力工程, 2022, 43(6): 51-60. doi: 10.13832/j.jnpe.2022.06.0051
引用本文: 钱冠华, 于涛, 杨涛, 赵亚楠, 赵鹏程. 基于统一框架的多物理耦合方案研究与平台开发[J]. 核动力工程, 2022, 43(6): 51-60. doi: 10.13832/j.jnpe.2022.06.0051
Qian Guanhua, Yu Tao, Yang Tao, Zhao Yanan, Zhao Pengcheng. Research and Platform Development of Multi-physical Coupling Scheme Based on Unified Framework[J]. Nuclear Power Engineering, 2022, 43(6): 51-60. doi: 10.13832/j.jnpe.2022.06.0051
Citation: Qian Guanhua, Yu Tao, Yang Tao, Zhao Yanan, Zhao Pengcheng. Research and Platform Development of Multi-physical Coupling Scheme Based on Unified Framework[J]. Nuclear Power Engineering, 2022, 43(6): 51-60. doi: 10.13832/j.jnpe.2022.06.0051

基于统一框架的多物理耦合方案研究与平台开发

doi: 10.13832/j.jnpe.2022.06.0051
基金项目: 国家自然科学基金(11875162);湖南省科技创新团队项目资助(2020RC4053);湖南省教育厅优秀青年项目(20B490)
详细信息
    作者简介:

    钱冠华(1995—),男,博士研究生,现从事反应堆热工流体方向研究,E-mail: qianguanhua@stu.usc.edu.cn

    通讯作者:

    于 涛,E-mail: yutao29@sina.com

  • 中图分类号: TL365

Research and Platform Development of Multi-physical Coupling Scheme Based on Unified Framework

  • 摘要: 为实现反应堆多物理、多过程、高保真数值计算,捕捉堆芯内部更真实的物理学行为,本文深入研究了多物理程序耦合方案,并基于上层监控架构、串行计算模式、网格一一映射的显式耦合方案,依托开源集成平台SALOME、通用平台接口ICoCo、三维堆芯中子学程序ADPRES和系统热工水力程序RELAP5搭建了基于统一框架的多物理耦合平台。经NEACRP-L-335压水堆弹棒基准题验证表明,耦合平台计算结果与基准例题吻合良好,耦合平台在功率峰捕获上更加准确,可释放部分安全裕量;对瞬态末各参数的计算结果也有足够高的精度,证明了耦合平台可对反应堆多物理、多过程耦合工况进行更精细、更深入的数值计算与安全分析。

     

  • 图  1  两种架构的示意图

    Figure  1.  Schematic Diagram of Two Architectures

    图  2  两种运行模式的逻辑

    Figure  2.  Logic of Two Operation Modes

    图  3  网格映射的两种方式

    Figure  3.  Two Methods of Mesh Mapping

    图  4  时间耦合的三种方式

    Figure  4.  Three Methods of Temporal Coupling

    图  5  SALOME主要功能模块

    Figure  5.  Main Functional Modules of SALOME

    图  6  MED的结构

    MPI—消息传递接口

    Figure  6.  MED Architecture

    图  7  ICoCo计算流程及组件功能

    Figure  7.  Calculation Process and Component Functions of ICoCo      

    图  8  ADPRES-RELAP5耦合计算流程

    Figure  8.  Coupling Calculation Process of ADPRES-RELAP5

    图  9  堆芯径向几何

    Figure  9.  Radial Geometry of Core

    图  10  ADPRES堆芯径向建模

    Figure  10.  Core Radial Modeling in ADPRES

    图  11  RELAP5流道建模

    Figure  11.  Modeling of Flow Channel in RELAP5

    图  12  相对功率因子随时间的变化趋势

    Figure  12.  Change Trend of Relative Power Factor with Time

    图  13  平均芯块温度随时间的变化趋势

    Figure  13.  Change Trend of Average Pellet Temperature with Time

    图  14  最大芯块温度随时间的变化趋势

    Figure  14.  Change Trend of Maximum Pellet Temperature with Time

    图  15  A2工况堆芯径向归一化功率分布

    Figure  15.  Radial Normalized Power Distribution of Core in A2 Case

    表  1  PWR基准题额定参数

    Table  1.   Rated Parameters of PWR Benchmark Task

    参数参数值参数参数值
    组件总数157包壳密度/(g·cm−3)6.6
    组件边长/cm21.606燃料释热率/%98.1
    活性区总长度/cm367.3冷却剂释热率/%1.9
    吸收区总长度/cm362.159入口冷却剂温度/℃286
    芯块材料UO2入口冷却剂质量流量/(kg·s−1)12893
    芯块密度/(g·cm−3)10.412系统压力/105Pa155
    包壳材料Zr-4额定功率/MW2775
    下载: 导出CSV

    表  2  A2工况稳态计算结果

    Table  2.   Results of Steady State Calculation in A2 Case

    参数ADPRES耦合平台相对误差/%
    相对功率因子110
    平均冷却剂温度/℃302.93303.140.069
    最冷却剂大温度/℃329.91330.870.291
    平均芯块温度/℃544.58546.200.297
    最大芯块温度/℃1669.141668.15−0.059
    下载: 导出CSV

    表  3  B2工况稳态计算结果

    Table  3.   Results of Steady State Calculation in B2 Case

    参数ADPRES耦合平台相对误差/%
    相对功率因子110
    平均冷却剂温度/℃302.60303.020.139
    最冷却剂大温度/℃330.15330.380.007
    平均芯块温度/℃542.40543.110.131
    最大芯块温度/℃1576.181576.360.0114
    下载: 导出CSV

    表  4  A2工况瞬态计算结果

    Table  4.   Results of Transient State Calculation in A2 Case

    参数参考值ADPRESADPRES相对误差/%耦合平台耦合平台相对误差/%
    功率峰时间/s0.10.100.10
    功率峰因子1.081.08120.111.08040.037
    5 s时功率因子1.0351.03570.0681.03510.0097
    5 s时平均芯块温度/℃554.6553.26−0.21554.35−0.045
    5 s时最大芯块温度/℃1691.81691.09−0.041691.810.0005
    下载: 导出CSV

    表  5  B2工况瞬态计算结果

    Table  5.   Results of Transient State Calculation in B2 Case

    参数参考值ADPRESADPRES相对误差/%耦合平台耦合平台相对误差/%
    功率峰时间/s0.120.1200.120
    功率峰因子1.0631.06330.02821.06310.0094
    5 s时功率因子1.0381.03950.14451.0390.0963
    5 s时平均芯块温度/℃552.0550.620.25551.330.0214
    5 s时最大芯块温度/℃1588.11587.97−0.00821588.150.0031
    下载: 导出CSV
  • [1] STIMPSON S, POWERS J, CLARNO K, et al. Pellet-clad mechanical interaction screening using VERA applied to Watts Bar Unit 1, Cycles 1-3[J]. Nuclear Engineering and Design, 2018, 327: 172-186. doi: 10.1016/j.nucengdes.2017.12.015
    [2] CAPPS N, STIMPSON S, CLARNO K, et al. Assessment of the analysis capability for core-wide PWR pellet-clad interaction screening of Watts Bar Unit 1[J]. Nuclear Engineering and Design, 2018, 333: 131-144. doi: 10.1016/j.nucengdes.2018.04.018
    [3] LARZELERE A R. Nuclear energy advanced modeling and simulation (NEAMS)[EB/OL]. (2010-04-29). https://www.energy.gov/sites/prod/files/NEAC042910-NEAM.pdf.
    [4] SOFU T, THOMAS J W. US DOE NEAMS program and SHARP multi-physics toolkit for high-fidelity SFR core design and analysis[C]//FR17: International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development. Yekaterinburg: IAEA, 2017.
    [5] YU Y Q, SHEMON E R, KIM T K, et al. Evaluation of hot channel factor for sodium-cooled fast reactors with multi-physics toolkit[J]. Nuclear Engineering and Design, 2020, 365: 110704. doi: 10.1016/j.nucengdes.2020.110704
    [6] SHEMON E R, YU Y Q, JUNG Y S, et al. Extension and demonstration of NEAMS multiphysics tools to lead-cooled, sodium-cooled, and molten salt fast reactor applications[Z]. Argonne: Argonne National Lab., 2019.
    [7] CHAULIAC C, ARAGONÉS J M, BESTION D, et al. NURESIM - a European simulation platform for nuclear reactor safety: multi-scale and multi-physics calculations, sensitivity and uncertainty analysis[J]. Nuclear Engineering and Design, 2011, 241(9): 3416-3426. doi: 10.1016/j.nucengdes.2010.09.040
    [8] CHANARON B, AHNERT C, CROUZET N, et al. Advanced multi-physics simulation for reactor safety in the framework of the NURESAFE project[J]. Annals of Nuclear Energy, 2015, 84: 166-177. doi: 10.1016/j.anucene.2014.12.013
    [9] CHANARON B. Overview of the NURESAFE European project[J]. Nuclear Engineering and Design, 2017, 321: 1-7. doi: 10.1016/j.nucengdes.2017.09.001
    [10] SPASOV I, MITKOV S, KOLEV N P, et al. Best-estimate simulation of a VVER MSLB core transient using the NURESIM platform codes[J]. Nuclear Engineering and Design, 2017, 321: 26-37. doi: 10.1016/j.nucengdes.2017.03.032
    [11] PÉRIN Y, VELKOV K. CTF/DYN3D multi-scale coupled simulation of a rod ejection transient on the NURESIM platform[J]. Nuclear Engineering and Technology, 2017, 49(6): 1339-1345. doi: 10.1016/j.net.2017.07.010
    [12] AYDEMIR N U, TROTTIER A, XU T, et al. Coupling of reactor transient simulations via the SALOME platform[J]. Annals of Nuclear Energy, 2019, 126: 434-442. doi: 10.1016/j.anucene.2018.11.049
    [13] ZHANG K L, MUÑOZ A C, SANCHEZ-ESPINOZA V H. Development and verification of the coupled thermal-hydraulic code - TRACE/SCF based on the ICoCo interface and the SALOME platform[J]. Annals of Nuclear Energy, 2021, 155: 108169. doi: 10.1016/j.anucene.2021.108169
    [14] 安萍,刘东,潘俊杰,等. 稳态堆芯多物理耦合系统CSSS V1.0的研发[J]. 原子能科学技术,2019, 53(5): 863-868. doi: 10.7538/yzk.2018.youxian.0473
    [15] 杨文,胡长军,刘天才,等. 数值反应堆及CVR1.0研究进展[J]. 原子能科学技术,2019, 53(10): 1821-1832.
    [16] 李相越,肖维,张滕飞,等. 热管反应堆多物理耦合平台初步研究[J]. 核动力工程,2021, 42(2): 208-212. doi: 10.13832/j.jnpe.2021.02.0208
    [17] LIU Z Y, CHEN J, CAO L Z, et al. Development and verification of the high-fidelity neutronics and thermal-hydraulic coupling code system NECP-X/SUBSC[J]. Progress in Nuclear Energy, 2018, 103: 114-125. doi: 10.1016/j.pnucene.2017.11.010
    [18] LIU Z Y, WANG B, ZHANG M W, et al. An internal parallel coupling method based on NECP-X and CTF and analysis of the impact of thermal-hydraulic model to the high-fidelity calculations[J]. Annals of Nuclear Energy, 2020, 146: 107645. doi: 10.1016/j.anucene.2020.107645
    [19] 姜荣,冯文培,陈红丽,等. 基于统一耦合框架的堆芯物理热工耦合程序的开发及验证[J]. 四川大学学报:自然科学版,2021, 58(4): 044006.
    [20] 罗晓,张喜林,陈红丽,等. 铅冷快堆多物理耦合分析方法及三维瞬态特性研究[J]. 核动力工程,2021, 42(S1): 11-16. doi: 10.13832/j.jnpe.2021.S1.0011
    [21] ZHANG K L. The multiscale thermal-hydraulic simulation for nuclear reactors: a classification of the coupling approaches and a review of the coupled codes[J]. International Journal of Energy Research, 2020, 44(5): 3295-3315. doi: 10.1002/er.5111
    [22] ZHAO P C, LEI Z Y, YU T, et al. Uncertainty analysis in coupled neutronic/thermal-hydraulic calculations based on computational fluid dynamics[J]. Annals of Nuclear Energy, 2021, 156: 108215. doi: 10.1016/j.anucene.2021.108215
    [23] ZHANG X L, ZHANG K L, SANCHEZ-ESPINOZA V H, et al. Multi-scale coupling of CFD code and sub-channel code based on a generic coupling architecture[J]. Annals of Nuclear Energy, 2020, 141: 107353. doi: 10.1016/j.anucene.2020.107353
    [24] ZHANG K L, ZHANG X L, SANCHEZ-ESPINOZA V, et al. Development of the coupled code–TRACE/TrioCFD based on ICoCo for simulation of nuclear power systems and its validation against the VVER-1000 coolant-mixing benchmark[J]. Nuclear Engineering and Design, 2020, 362: 110602. doi: 10.1016/j.nucengdes.2020.110602
    [25] ZHANG K L. Multi-scale thermal-hydraulic developments for the detailed analysis of the flow conditions within the reactor pressure vessel of pressurized water reactors[D]. Karlsruhe: Karlsruher Institut für Technologie (KIT), 2020.
    [26] SALOME. The open source integration platform for numerical simulation[EB/OL]. [2021-11-10]. https://www.salome-platform.org.
    [27] ZHANG K L, SANCHEZ-ESPINOZA V, STIEGLITZ R. Implementation of the system thermal-hydraulic code TRACE into SALOME platform for multi-scale coupling[C]//50th Annual Meeting on Nuclear Technology (AMNT 2019). Berlin: INFORUM Verlags-und Verwaltungsgesellschaft, 2019.
    [28] SALOME. Salome platform documentation[EB/OL]. [2021-11-10]. https://docs.salome-platform.org/7/dev/MEDCoupling/library.html
    [29] DEVILLE E, PERDU F. Documentation of the interface for code coupling: ICOCO[Z]. CEA, STMF/LMES/RT/12-029/A, 2012.
    [30] ADPRES. An open nuclear reactor simulator and reactor core analysis tool[EB/OL]. [2021-01-09]. https://imronuke.github.io/ADPRES/method
    [31] IMRON M. Development and verification of open reactor simulator ADPRES[J]. Annals of Nuclear Energy, 2019, 133: 580-588. doi: 10.1016/j.anucene.2019.06.049
    [32] 刘余,张虹. RELAP5程序耦合接口的开发[J]. 核动力工程,2009, 30(6): 38-40,45.
    [33] 何帆. 基于RELAP5/FLUENT耦合程序的熔盐堆热工水力瞬态分析[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2021.
    [34] FINNEMANN H, GALATI A. NEACRP-L-335: 3-D LWR core transient benchmark specification: NEACRP-L-335 (Revision 1)[Z]. OECD/NEA, 1992.
    [35] FINNEMANN H, BAUER H, GALATI A, et al. Results of LWR core transient benchmarks[Z]. Paris: Nuclear Energy Agency, 1993.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  151
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 修回日期:  2022-01-04
  • 刊出日期:  2022-12-14

目录

    /

    返回文章
    返回