高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含铝奥氏体耐热钢在超临界二氧化碳中的腐蚀行为

马赵丹丹 丛硕 陈勇 郭相龙 张瑞谦 刘珠 张弦

马赵丹丹, 丛硕, 陈勇, 郭相龙, 张瑞谦, 刘珠, 张弦. 含铝奥氏体耐热钢在超临界二氧化碳中的腐蚀行为[J]. 核动力工程, 2022, 43(6): 101-107. doi: 10.13832/j.jnpe.2022.06.0101
引用本文: 马赵丹丹, 丛硕, 陈勇, 郭相龙, 张瑞谦, 刘珠, 张弦. 含铝奥氏体耐热钢在超临界二氧化碳中的腐蚀行为[J]. 核动力工程, 2022, 43(6): 101-107. doi: 10.13832/j.jnpe.2022.06.0101
Ma Zhaodandan, Cong Shuo, Chen Yong, Guo Xianglong, Zhang Ruiqian, Liu Zhu, Zhang Xian. Corrosion Behavior of Alumina-forming Austenitic Heat Resistant Steel in Supercritical Carbon Dioxide[J]. Nuclear Power Engineering, 2022, 43(6): 101-107. doi: 10.13832/j.jnpe.2022.06.0101
Citation: Ma Zhaodandan, Cong Shuo, Chen Yong, Guo Xianglong, Zhang Ruiqian, Liu Zhu, Zhang Xian. Corrosion Behavior of Alumina-forming Austenitic Heat Resistant Steel in Supercritical Carbon Dioxide[J]. Nuclear Power Engineering, 2022, 43(6): 101-107. doi: 10.13832/j.jnpe.2022.06.0101

含铝奥氏体耐热钢在超临界二氧化碳中的腐蚀行为

doi: 10.13832/j.jnpe.2022.06.0101
详细信息
    作者简介:

    马赵丹丹(1991—),女,博士研究生,主要从事超临界二氧化碳核动力装置结构材料研究工作,E-mail: npicmzdd@163.com

    通讯作者:

    陈 勇,E-mail: chenyong-67@163.com

  • 中图分类号: TG178; TL27

Corrosion Behavior of Alumina-forming Austenitic Heat Resistant Steel in Supercritical Carbon Dioxide

  • 摘要: 研究了20Cr-25Ni合金和一种新型结构材料含铝的奥氏体耐热钢(AFA钢)在600℃/20 MPa的超临界二氧化碳(S-CO2)环境中的腐蚀行为,并对2种合金的氧化膜形貌、成分和结构进行分析。研究发现,20Cr-25Ni合金出现明显的腐蚀增重增长趋势,表现出“抛物线”上升规律;AFA钢腐蚀增重趋势缓慢,腐蚀1000 h后仅为2.11 mg/dm2。20Cr-25Ni合金表面出现粗大的氧化产物,随腐蚀时间延长,AFA钢的氧化膜始终保持致密、连续。通过氧化膜的截面形貌分析发现,20Cr-25Ni合金腐蚀后具有两层氧化膜结构,主要由Fe3O4和FeCr2O4氧化层以及少量尖晶石组成。而AFA钢中出现了3层氧化膜结构,中间和最内层分别为Cr2O3和Al2O3氧化膜,最外层分布了一层不连续的FeCr2O4尖晶石氧化物。由于形成了致密的Al2O3氧化膜,AFA钢的抗腐蚀性能大幅提升。

     

  • 图  1  S-CO2均匀腐蚀实验装置示意图

    Figure  1.  Schematic Diagram of S-CO2 Uniform Corrosion Experimental Apparatus      

    图  2  腐蚀前合金的基体组织及析出相的SEM图

    Figure  2.  SEM Diagram of Matrix Structure and Precipitated Phase of Alloy before Corrosion

    图  3  20Cr-25Ni合金和AFA钢的腐蚀增重曲线

    Figure  3.  Corrosion Weight Gain Curves of Alloy 20Cr-25Ni and AFA Steel

    图  4  在 600℃/20 MPa 的 S-CO2环境下 2 种合金腐蚀氧化膜的表面形貌

    Figure  4.  Surface Morphology of Corrosion Oxide Films of Two Alloys in S-CO2 Environment at 600℃/20 MPa

    图  5  腐蚀1000 h后20Cr-25Ni合金氧化膜的TEM图

    Figure  5.  TEM Images of the Oxide Film of Alloy 20Cr-25Ni After 1000 h Corrosion

    图  6  腐蚀1000 h后AFA钢氧化膜的TEM图

    Figure  6.  TEM Images of Oxide Film of AFA Steel After 1000 h Corrosion

    图  7  2种合金在S-CO2环境中的氧化腐蚀机制

    Figure  7.  Oxidation Corrosion Mechanism of Two Alloys in S-CO2 Environment

    表  1  2种合金材料的化学成分

    Table  1.   Chemical Composition of Two Alloy Materials

    材料元素质量分数/%
    NiCrAlNbMoSiCFe
    20Cr-25Ni合金252000.720.30.02Bal.
    AFA钢25183.50.620.30.02Bal.
      Bal.—其余成分
    下载: 导出CSV
  • [1] KATO Y, NITAWAKI T, MUTO Y. Medium temperature carbon dioxide gas turbine reactor[J]. Nuclear Engineering and Design, 2004, 230(1-3): 195-207. doi: 10.1016/j.nucengdes.2003.12.002
    [2] 黄彦平,王俊峰. 超临界二氧化碳在核反应堆系统中的应用[J]. 核动力工程,2012, 33(3): 21-27. doi: 10.3969/j.issn.0258-0926.2012.03.005
    [3] AHN Y, BAE S J, KIM M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. doi: 10.1016/j.net.2015.06.009
    [4] EOH J H, NO H C, YOO Y H, et al. Sodium-CO2 interaction in a supercritical CO2 power conversion system coupled with a sodium fast reactor[J]. Nuclear Technology, 2011, 173(2): 99-114. doi: 10.13182/NT11-A11541
    [5] YAMAMOTO Y, BRADY M P, LU Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007, 316(5823): 433-436. doi: 10.1126/science.1137711
    [6] YAMAMOTO Y, BRADY M P, LU Z P, et al. Alumina-forming austenitic stainless steels strengthened by laves phase and MC carbide precipitates[J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2737-2746. doi: 10.1007/s11661-007-9319-y
    [7] 刘珠,郭相龙,王鹏,等. 310S不锈钢在超临界二氧化碳中的腐蚀行为研究[J]. 核动力工程,2020, 41(S1): 183-187. doi: 10.13832/j.jnpe.2020.S1.0183
    [8] FURUKAWA T, INAGAKI Y, ARITOMI M. Compatibility of FBR structural materials with supercritical carbon dioxide[J]. Progress in Nuclear Energy, 2011, 53(7): 1050-1055. doi: 10.1016/j.pnucene.2011.04.030
    [9] HE L F, ROMAN P, LENG B, et al. Corrosion behavior of an alumina forming austenitic steel exposed to supercritical carbon dioxide[J]. Corrosion Science, 2014, 82: 67-76. doi: 10.1016/j.corsci.2013.12.023
    [10] SHI H, JIANU A, WEISENBURGER A, et al. Corrosion resistance and microstructural stability of austenitic Fe-Cr-Al-Ni model alloys exposed to oxygen-containing molten lead[J]. Journal of Nuclear Materials, 2019, 524: 177-190. doi: 10.1016/j.jnucmat.2019.06.043
    [11] GIGGINS C S, PETTI F S. Oxidation of Ni-Cr-Al alloys between 1000℃ and 1200℃[J]. Journal of the Electrochemical Society, 1971, 118(11): 1782-1790. doi: 10.1149/1.2407837
    [12] CHEN H S, KIM S H, KIM C, et al. Corrosion behaviors of four stainless steels with similar chromium content in supercritical carbon dioxide environment at 650℃[J]. Corrosion Science, 2019, 156: 16-31. doi: 10.1016/j.corsci.2019.04.043
    [13] CAO G, FIROUZDOR V, SRIDHARAN K, et al. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide[J]. Corrosion Science, 2012, 60: 246-255. doi: 10.1016/j.corsci.2012.03.029
    [14] BRADY M P, KEISER J R, MORE K L, et al. Comparison of short-term oxidation behavior of model and commercial chromia-forming ferritic stainless steels in dry and wet air[J]. Oxidation of Metals, 2012, 78(1-2): 1-16. doi: 10.1007/s11085-012-9289-3
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  317
  • HTML全文浏览量:  103
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-23
  • 修回日期:  2022-03-11
  • 刊出日期:  2022-12-14

目录

    /

    返回文章
    返回