Effect of Working Medium Pressure and Creep on the Stress Corrosion Cracking Behavior of Cold Deformed 310S Stainless Steel in Supercritical Water Environment
-
摘要: 310S不锈钢是一种性能较好的超临界水冷堆候选包壳材料,为丰富310S不锈钢在在超临界水环境下的应力腐蚀性能研究,特别是裂纹扩展速率方面的数据。本研究使用在线监测裂纹扩展的方法,测量了不同冷变形的310S不锈钢在多种工况下的裂纹扩展速率,分析了工质压力、高温蠕变等因素对310S开裂行为的作用。结果显示:超临界水或高温蒸汽的压力变化对310S不锈钢在500℃下的开裂行为的影响较为有限,冷变形作用促进材料的裂纹扩展,材料的高温蠕变行为在超临界水中对应力腐蚀开裂过程中具有较为重要的加速作用,特别是对于高冷变形和高载荷条件下的材料。本研究丰富了超临界水环境下310S的应力腐蚀裂纹扩展速率的数据,证明了提高材料的抗蠕变性能是优化包壳材料服役性能的重要手段之一,包壳设计制造的过程中应当避免较大幅度的冷变形。Abstract: 310S stainless steel is a good candidate cladding material for supercritical water-cooled reactor. In order to enrich the research on stress corrosion behavior of 310S stainless steel in supercritical water environment, especially the data on crack growth rate, this study used the method of online monitoring crack growth to measure the crack growth rate of 310S stainless steel with different cold deformation under various working conditions, and analyzed the effect of working medium pressure, high-temperature creep and other factors on the 310S cracking behavior. The results show that: The pressure change of supercritical water or high-temperature steam has a limited effect on the cracking behavior of 310S stainless steel at 500℃, and cold deformation promotes the crack growth of the material. The high-temperature creep behavior of materials plays an important role in accelerating the process of stress corrosion cracking in supercritical water, especially for materials under high cold deformation and high load. This study enriches the data of stress corrosion crack growth rate of 310S in supercritical water environment, and proves that improving the creep resistance of materials is one of the important means to optimize the service performance of cladding materials, and large cold deformation shall be avoided in the process of cladding design and manufacturing.
-
Key words:
- Supercritical water cooled reactor /
- 310S /
- Stress corrosion cracking /
- Creep /
- Cold deformation
-
表 1 310S不锈钢成分
Table 1. Composition of 310S Stainless Steel
元素 Fe Cr Ni C Si Mn P S 质量分数/% Bal. 25.23 19.12 0.05 0.52 0.99 0.024 0.001 Bal.—Fe元素的占比余量 表 2 CGR测试参数
Table 2. Parameters of Crack Growth Rate Test
样品
编号变形
幅度/%压力/MPa 温度/℃ 工质类型 K/(MPa • m1/2) 201 20 0.1/5/10
/15/20/25500 SCW/SHS/Ar 20 301 30 25 500 SCW/Ar 20/25 SCW—超临界水;SHS—高温蒸汽;Ar—高温氩气;K—应力强度因子 -
[1] 黄彦平,臧金光. 超临界水冷堆[J]. 现代物理知识,2018, 30(4): 19-24. doi: 10.13405/j.cnki.xdwz.2018.04.006 [2] RAHMAN M M, JI D X, JAHAN N, et al. Design concepts of supercritical water-cooled reactor (SCWR) and nuclear marine vessel: a review[J]. Progress in Nuclear Energy, 2020, 124: 103320. doi: 10.1016/j.pnucene.2020.103320 [3] 熊茹. SCWR候选包壳材料310S不锈钢应用性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2014. [4] NEZAKAT M, AKHIANI H, PENTTILÄ S, et al. Oxidation Behavior of Austenitic Stainless Steel 316L and 310S in Air and Supercritical Water[J]. Journal of Nuclear Engineering and Radiation Science, 2016, 2(2): 021008. doi: 10.1115/1.4031817 [5] AMIRKHIZ B S, LI J, ZENG Y M, et al. TEM study of supercritical water corrosion in 310S and 800H alloys[J]. Microscopy and Microanalysis, 2014, 20(S3): 1866-1867. doi: 10.1017/S1431927614011064 [6] BEHNAMIAN Y, MOSTAFAEI A, KOHANDEHGHAN A, et al. Characterization of oxide scales grown on alloy 310S stainless steel after long term exposure to supercritical water at 500℃[J]. Materials Characterization, 2016, 120: 273-284. doi: 10.1016/j.matchar.2016.09.013 [7] BEHNAMIAN Y, MOSTAFAEI A, KOHANDEHGHAN A, et al. Internal oxidation and crack susceptibility of alloy 310S stainless steel after long term exposure to supercritical water at 500℃[J]. The Journal of Supercritical Fluids, 2017, 120: 161-172. doi: 10.1016/j.supflu.2016.09.007 [8] YOUNG D J, PINT B A. Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor[J]. Oxidation of Metals, 2006, 66(3-4): 137-153. doi: 10.1007/s11085-006-9030-1 [9] GUO S W, XU D H, LI Y H, et al. Corrosion characteristics and mechanisms of typical Ni-based corrosion-resistant alloys in sub- and supercritical water[J]. The Journal of Supercritical Fluids, 2021, 170: 105138. doi: 10.1016/j.supflu.2020.105138 [10] ZHANG Y C, LI M C, BI H Y, et al. Mechanical properties of cold-rolled metastable Cr-Mn-Ni-N austenitic stainless steel at low ambient temperature[J]. Materials Science and Engineering:A, 2019, 759: 224-233. doi: 10.1016/j.msea.2019.05.045 [11] PAYET M, MARCHETTI L, TABARANT M, et al. Corrosion mechanisms of 316L stainless steel in supercritical water: The significant effect of work hardening induced by surface finishes[J]. Corrosion Science, 2019, 157: 157-166. doi: 10.1016/j.corsci.2019.05.014 [12] YUAN J T, WU X M, WANG W, et al. The effect of surface finish on the scaling behavior of stainless steel in steam and supercritical water[J]. Oxidation of Metals, 2013, 79(5-6): 541-551. doi: 10.1007/s11085-013-9380-4 [13] ARIOKA K, YAMADA T, TERACHI T, et al. Cold work and temperature dependence of stress corrosion crack growth of austenitic stainless steels in hydrogenated and oxygenated high-temperature water[J]. CORROSION, 2007, 63(12): 1114-1123. doi: 10.5006/1.3278329 [14] LIU J H, TAN Y M, WANG Y, et al. Stress corrosion cracking behavior of 310S in supercritical water with different oxygen concentrations[J]. Nuclear Science and Techniques, 2018, 29(5): 76. doi: 10.1007/s41365-018-0405-1 [15] ZHONG Y P, ZHOU C, CHEN S Y, et al. Effects of temperature and pressure on stress corrosion cracking behavior of 310S stainless steel in chloride solution[J]. Chinese Journal of Mechanical Engineering, 2017, 30(1): 200-206. doi: 10.3901/CJME.2016.0420.056 [16] WAS G S, AMPORNRAT P, GUPTA G, et al. Corrosion and stress corrosion cracking in supercritical water[J]. Journal of Nuclear Materials, 2007, 371(1-3): 176-201. doi: 10.1016/j.jnucmat.2007.05.017 [17] WAS G S, TEYSSEYRE S, JIAO Z. Corrosion of austenitic alloys in supercritical water[J]. CORROSION, 2006, 62(11): 989-1005. doi: 10.5006/1.3278237 [18] SHEN Z, CHEN K, GUO X L, et al. A study on the corrosion and stress corrosion cracking susceptibility of 310-ODS steel in supercritical water[J]. Journal of Nuclear Materials, 2019, 514: 56-65. doi: 10.1016/j.jnucmat.2018.11.016 [19] CHEN K, WANG J M, SHEN Z, et al. Comparison of the stress corrosion cracking growth behavior of cold worked Alloy 690 in subcritical and supercritical water[J]. Journal of Nuclear Materials, 2019, 520: 235-244. doi: 10.1016/j.jnucmat.2019.04.017 [20] 李梦源. 高温蒸汽环境对电站锅炉管材料应力腐蚀裂纹扩展影响研究[D]. 北京: 华北电力大学(北京), 2016. [21] SHEN Z, ZHANG L F, TANG R, et al. SCC susceptibility of type 316Ti stainless steel in supercritical water[J]. Journal of Nuclear Materials, 2015, 458: 206-215. doi: 10.1016/j.jnucmat.2014.12.014 [22] SHEN Z, ZHANG L F, TANG R, et al. The effect of temperature on the SSRT behavior of austenitic stainless steels in SCW[J]. Journal of Nuclear Materials, 2014, 454(1-3): 274-282. doi: 10.1016/j.jnucmat.2014.08.006 [23] LIU J H, TAN Y M, JIANG E, et al. Stress corrosion cracking behavior of 310S stainless steel in supercritical water at different temperature[J]. Materials and Corrosion, 2019, 70(5): 868-876. doi: 10.1002/maco.201810565 [24] ARIOKA K, YAMADA T, MIYAMOTO T, et al. Dependence of stress corrosion cracking of alloy 690 on temperature, cold work, and carbide precipitation-role of diffusion of vacancies at crack tips[J]. CORROSION, 2011, 67(3): 035006. [25] ARIOKA K, MIYAMOTO T, YAMADA T, et al. Role of cavity formation in crack initiation of cold-worked carbon steel in high-temperature water[J]. CORROSION, 2013, 69(5): 487-496. doi: 10.5006/0821 [26] CHEN K, WANG J M, DU D H, et al. Stress corrosion crack growth behavior of type 310S stainless steel in supercritical water[J]. CORROSION, 2018, 74(7): 776-787. doi: 10.5006/2775 [27] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 平面应变断裂韧度KIC试验方法: GB/T 4161-2007[S]. 北京: 中国标准出版社, 2008: 1-18. [28] XIAO B J, HUANG X, YANG Q, et al. Effect of steam temperature and pressure on the oxidation of potential coating alloy FeCrAl for supercritical water-cooled reactor application[J]. Journal of Nuclear Engineering and Radiation Science, 2019, 5(4): 041204. doi: 10.1115/1.4042500 [29] HAMDANI F, SHOJI T. Oxidation behavior of UHP Fe-based model alloy and SUS310S steel in superheated steam and supercritical water conditions[J]. Oxidation of Metals, 2018, 89(3-4): 319-330. doi: 10.1007/s11085-017-9788-3 [30] HOLCOMB G R. Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines[J]. Journal of the Electrochemical Society, 2009, 156(9): C292-C297. doi: 10.1149/1.3155442 [31] AINSWORTH R A. Creep cracking[M]. MILNE I, RITCHIE R O, KARIHALOO B. Comprehensive Structural Integrity. Amsterdam: Elsevier, 2003: 75-87. [32] ARIOKA K. Change in bonding strength at grain boundaries before long-term SCC initiation[J]. CORROSION, 2015, 71(4): 403-419. doi: 10.5006/1573 [33] LIU X B, YAN L G, ZHANG X F. Suppressing precipitation during the reverse transformation from martensite to austenite in a cold-rolled austenite stainless steel[J]. Materials Science and Engineering:A, 2021, 804: 140514. doi: 10.1016/j.msea.2020.140514 [34] 孟杨,任群,鞠新华. 利用局域取向差衡量变形金属中的位错密度[J]. 材料热处理学报,2014, 35(11): 122-128. doi: 10.13289/j.issn.1009-6264.2014.11.023